
Sound Gradual Verification with Symbolic Execution

CONRAD ZIMMERMAN, Brown University, USA

JENNA DIVINCENZO, Purdue University, USA

JONATHAN ALDRICH, Carnegie Mellon University, USA

Gradual veri�cation, which supports explicitly partial speci�cations and veri�es them with a combination of
static and dynamic checks, makes veri�cation more incremental and provides earlier feedback to developers.
While an abstract, weakest precondition-based approach to gradual veri�cation was previously proven sound,
the approach did not provide su�cient guidance for implementation and optimization of the required run-time
checks. More recently, gradual veri�cation was implemented using symbolic execution techniques, but the
soundness of the approach (as with related static checkers based on implicit dynamic frames) was an open
question. This paper puts practical gradual veri�cation on a sound footing with a formalization of symbolic
execution, optimized run-time check generation, and run time execution. We prove our approach is sound; our
proof also covers a core subset of the Viper tool, for which we are aware of no previous soundness result. Our
formalization enabled us to �nd a soundness bug in an implemented gradual veri�cation tool and describe the
�x necessary to make it sound.

CCS Concepts: • Theory of computation→ Logic and veri�cation; Separation logic.

Additional Key Words and Phrases: gradual veri�cation, symbolic execution, static veri�cation, implicit
dynamic frames, soundness proof

ACM Reference Format:

Conrad Zimmerman, Jenna DiVincenzo, and Jonathan Aldrich. 2024. Sound Gradual Veri�cation with Symbolic
Execution. Proc. ACM Program. Lang. 8, POPL, Article 85 (January 2024), 30 pages. https://doi.org/10.1145/
3632927

1 INTRODUCTION

Static veri�cation technology based on Hoare-logic-styled pre- and postconditions [Hoare 1969] has
come a long way in the last few decades. Such tools can now support the modular veri�cation of data
structures that manipulate the heap [Reynolds 2002; Smans et al. 2012] and are recursive [Parkinson
and Bierman 2005]. However, veri�cation is expensive, requiring many auxiliary speci�cations such
as loop invariants and lemmas, and often costing an order of magnitude more human e�ort than
development alone. In response, Bader et al. [2018] introduced the idea of gradual veri�cation, which
supports the incremental speci�cation and veri�cation of code by seamlessly combining static and
dynamic veri�cation. A developer can now write partial, imprecise speci�cations—formulas such as
? ∗ G .5 == 2—backed by run-time checking. During static veri�cation, imprecise speci�cations are
strengthened in support of proof goals when it is necessary and non-contradictory to do so. Then,
corresponding dynamic checks are inserted to ensure soundness. As a result, gradual veri�cation
allows users to specify and verify only the properties and components of their system that they
care about, and incrementally increase the scope of veri�cation as necessary.

Authors’ addresses: Conrad Zimmerman, conrad_zimmerman@brown.edu, Brown University, Providence, RI, USA; Jenna
DiVincenzo, jennad@purdue.edu, Purdue University, West Lafayette, IN, USA; Jonathan Aldrich, jonathan.aldrich@cs.cmu.
edu, Carnegie Mellon University, Pittsburgh, PA, USA.

© 2024 Copyright held by the owner/author(s).
ACM 2475-1421/2024/1-ART85
https://doi.org/10.1145/3632927

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 85. Publication date: January 2024.

This work is licensed under a Creative Commons Attribution 4.0 International License.

https://creativecommons.org/licenses/by/4.0/
HTTPS://ORCID.ORG/0009-0009-3961-3043
HTTPS://ORCID.ORG/0000-0003-3029-2617
HTTPS://ORCID.ORG/0000-0003-0631-5591
https://doi.org/10.1145/3632927
https://doi.org/10.1145/3632927
https://orcid.org/0009-0009-3961-3043
https://orcid.org/0000-0003-3029-2617
https://orcid.org/0000-0003-3029-2617
https://orcid.org/0000-0003-0631-5591
https://doi.org/10.1145/3632927
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3632927&domain=pdf&date_stamp=2024-01-05

85:2 C. Zimmerman, J. DiVincenzo, and J. Aldrich

Based on this early idea, Wise et al. [2020] and DiVincenzo et al. [2022] extended gradual veri�-
cation to support recursive heap data structures. Wise et al. [2020] presented the �rst theory of
gradual veri�cation for implicit dynamic frames (IDF) [Smans et al. 2012], a variant of separation
logic [Reynolds 2002], and abstract predicates [Parkinson and Bierman 2005]. Their design, cor-
responding theory, and proofs rely heavily on the backward-reasoning technique called weakest

liberal preconditions (WLP), and on in�nite sets that are not easy to approximate in �nite form.
Additionally, Wise et al. [2020]’s design checks all proof obligations at run-time, even when some
obligations have been discharged statically. Therefore, it remained unclear how to implement
gradual veri�cation and whether gradually-veri�ed programs could achieve good performance.
Fortunately, in follow-up work, DiVincenzo et al. [2022] implemented and empirically evaluated
Gradual C0, the �rst gradual veri�er that can be used on real programs. Gradual C0 is based on
symbolic execution, a forward-reasoning technique which is routinely used in static veri�ers such
as Viper [Müller et al. 2016], and optimizes run-time checks with statically available information to
improve run-time performance. DiVincenzo et al. [2022] showed that this improvement over prior
work yields signi�cant performance boosts.

Technically, Gradual C0 is built on top of Viper [Müller et al. 2016], which is a static veri�cation
infrastructure and tool that facilitates the development of program veri�ers supporting IDF and
recursive abstract predicates. Viper also uses symbolic execution at its core. Besides Gradual C0, an
array of widely-used veri�ers have been built on top of Viper, including Prusti [Astrauskas et al.
2022] for Rust, Nagini [Eilers and Müller 2018] for Python, and VerCors [Blom et al. 2017] for Java.
However, despite its prominence, Viper has not been proven sound; nor have, to our knowledge,
other symbolic execution-based methods for verifying IDF logics. Thanks to the complexities of
symbolic execution and Viper’s support for practical but advanced veri�cation features, Schwerho�
[2016]’s speci�cation of Viper is full of implementation details that make it di�cult to formally
state and prove soundness. Since Gradual C0 is built on Viper, this problem carries over to Gradual
C0’s speci�cation in DiVincenzo et al. [2022] and is made worse by the combination of static
and dynamic checking. Thus DiVincenzo et al. [2022] does not contain a proof of soundness for
Gradual C0. Furthermore, since Gradual C0 uses symbolic execution instead of WLP and optimizes
run-time checks, Wise et al. [2020]’s proof is also not applicable. This is problematic, because the
intricate interactions of static and dynamic checking in gradual veri�cation can easily lead to subtle
soundness bugs in gradual veri�ers like Gradual C0, as we will show in §8.

Therefore, this paper presents a formal statement and proof of soundness for Gradual C0 and its
underlying core subset of Viper. We formalize Gradual C0’s symbolic execution algorithm in sets of
inference rules, rather than the CPS-style speci�cation in DiVincenzo et al. [2022] and Schwerho�
[2016], to enable abstractions that improve the readability of the design and make it easier to
state and prove soundness. The level of abstraction we use is far closer to the implementation of
Gradual C0 than Wise et al. [2020]’s formal system, but slightly more abstract than DiVincenzo
et al. [2022]’s CPS-style speci�cation, which is littered with implementation details. Reaching
the right level of abstraction for our goals took some trial and error. We re�ect on this process,
including our missteps, in this paper as well. Our approach is inspired by the formal system for a
basic type checker combined with symbolic execution in Khoo et al. [2010]. However, we separate
the rules into several types of judgements to re�ect the architecture of DiVincenzo et al. [2022]
and Schwerho� [2016] and deal with the complexities of IDF and gradual veri�cation. Given an
initial symbolic state, the rules compute a next possible state (of which many may exist), and a set
of run-time checks required for this transition when optimism is relied upon. That is, our rules
are non-deterministic, but only in regards to the multiple execution paths explored by symbolic
execution at program points like if statements, while loops, and logical conditionals.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 85. Publication date: January 2024.

Sound Gradual Verification with Symbolic Execution 85:3

Furthermore, we clearly separate the cases required to support imprecise speci�cations from those
dealing with the underlying veri�cation algorithm supporting only complete static speci�cations.
Therefore, our formal system is a conservative extension of a core calculus of Viper; and so, by
formalizing Gradual C0 and proving it sound, we have also formalized the core of Viper and proved
it sound. To make it easier for readers of this paper to take advantage of our formal statement
and proof of soundness for Viper for their own uses, we present �rst a core language, which
we call SVLC0, along with veri�cation rules modeling Gradual C0’s underlying static veri�cation
algorithm. We then de�ne GVLC0, which extends SVLC0 to include gradual speci�cations and
corresponds to the full language used by Gradual C0. We also formally de�ne static veri�cation
for GVLC0, modeling the veri�cation algorithm of Gradual C0. We hope this separation provides a
solid foundation for future proof endeavors of other static veri�ers based on symbolic execution.
In order to fully de�ne the behavior of GVLC0 and its subset SVLC0, we specify its dynamic

semantics, which combines the semantics of C0 [Arnold 2010] with the dynamic semantics of
GVLRP, the language used to de�ne the theory of gradual veri�cation with recursive predicates in
Wise et al. [2020]. The C0 programming language is a core, safe variant of the C language introduced
for education [Arnold 2010] and is also supported by Gradual C0. C0 allows speci�cation of the pre-
and post-conditions of methods, but does not include constructs necessary for static veri�cation
using IDF. Thus we add the dynamic semantics from Wise et al. [2020] for IDF speci�cations,
recursive predicates, and imprecise speci�cations. These semantics assert the validity of every
speci�cation at run-time, ensuring both memory safety and functional correctness of programs.
Thus these semantics provide a foundation against which we can establish the soundness of Gradual
C0’s symbolic execution algorithm. That is, we prove that when all run-time checks produced by the
symbolic execution algorithm are satis�ed, then the program is guaranteed to dynamically execute
successfully. A tricky part of this proof is de�ning a valuation function [Khoo et al. 2010], which is
a partial function mapping symbolic values from symbolic execution to their concrete values for a
speci�c execution trace from program execution. This function is used to state the correspondence
between symbolic and concrete execution states. While we start with Khoo et al. [2010]’s simplistic
valuation function, we end up with one that is far more complex as it additionally connects
isorecursive symbolic predicates from static veri�cation with their equirecursive counterparts in
dynamic veri�cation and handles global invariants such as separation and access permissions from
IDF. This proof technique allows our formal system and reasoning to match the implementation
more closely than other techniques such as the evidence calculus used in Garcia et al. [2016]. This
enables us to explore future developments using either the implementation or formalization, and
easily update the other to ensure we remain both implementable and sound.

Finally, we present and discuss a soundness bug we found in Gradual C0 during our proof work
and have since communicated to DiVincenzo et al. [2022]. The bug is a speci�c interaction caused
by reducing run-time checks using statically available information in isorecursive predicates, and
then checking the remaining run-time checks using equirecursive predicates. This bug could not
have arisen in Wise et al. [2020]’s work as their gradual veri�cation approach checks all proof
obligations at run time. We explore several options for addressing this soundness bug, explain our
chosen method in detail, and discuss an implementation �x. Despite DiVincenzo et al. [2022]’s
thorough empirical evaluation and testing of Gradual C0, this bug was never discovered in their
testing. This is likely due to the subtle, intricate interactions between veri�cation technologies in
gradual veri�cation that are hard to test. This demonstrates the value of formally proving soundness
in the case of gradual veri�cation, and we hope this paper serves as a basis for similar future work.
To summarize, this paper makes the following contributions:

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 85. Publication date: January 2024.

85:4 C. Zimmerman, J. DiVincenzo, and J. Aldrich

• Formalization and proof of soundness for Gradual C0, the �rst gradual veri�er for recursive
heap data structures that is based on symbolic execution [DiVincenzo et al. 2022]. The level
of abstraction chosen for this proof work improves the readability of Gradual C0’s design and
makes adapting this work to prove other symbolic execution-based gradual veri�ers sound
much easier.

• Formalization of a core subset of the Viper static veri�er, which is based on symbolic execution
and supports IDF. This work provides the �rst solid foundation for proof work on static veri�ers
that use symbolic execution and IDF.

• A re�ection on the trial and error of picking the right level of abstraction for our proof work in
this paper.

• Demonstration of a soundness bug we found in Gradual C0 during our work and have since
communicated to DiVincenzo et al. [2022]. We also provide several options for addressing this
bug and advise on how to implement one of our solutions.

2 SVLC0

We �rst introduce SVLC0 and a corresponding static veri�cation algorithm. Since it does not include
imprecise speci�cations, SVLC0 can be veri�ed by existing static veri�cation tools such as Viper
[Müller et al. 2016]. The veri�cation algorithm corresponds to the core algorithm of Viper, which is
the foundation for static veri�cation in Gradual C0. We illustrate how our formalism and soundness
result can be applied to Viper. In later sections we extend SVLC0’s veri�cation algorithm to support
the veri�cation of gradually-speci�ed GVLC0 programs.

2.1 Definition

We de�ne an abstract syntax for SVLC0 in Figure 1. Its form is similar to the language of Viper,
which is intended for use as a generic backend for multiple frontend languages; however, we use
the syntax of C0.
Programs consist of struct, predicate, and method1 de�nitions, and an entry statement. Struct

de�nitions contain a list of �elds, predicate de�nitions contain a parameter list and a formula (the
predicate body), and method de�nitions contain a parameter list, a return type, a pre-condition
(denoted by requires), a post-condition (denoted by ensures), and a statement (the method body).
The entry statement represents the body of the main method in traditional C programs. Statements
in SVLC0 follow C conventions, except for while, alloc, and return. All while statements specify
a formula called a loop invariant, which states the properties preserved by the loop during execution.
An alloc statement allocates new memory on the heap, initializes it with a default value, and
updates the variable on the left-hand side to contain a reference to the newly allocated value. This
matches C0 semantics, except C0 returns a pointer, not a reference, and thus the type of the variable
is written di�erently. We omit return statements; instead, the method body must assign to a special
result variable, whose value is then returned after executing the method body. This re�ects the
behavior of Gradual Viper which also does not have a return statement. Additionally, we simplify
several statements to make formal de�nitions and proofs easier. For example, assignment only
occurs to a variable or a �eld of a variable; statements such as x.y.z = 1 are not permitted. We
also omit void method calls, since these do not di�er meaningfully from calls to value-returning
methods.
Like Gradual C0 [DiVincenzo et al. 2022], SVLC0 does not support arrays. Verifying non-trivial

properties of programs that use arrays would require signi�cant extensions to existing gradual

1To distinguish them from pure functions (which are used in the speci�cation language of similar veri�cation tools) we use
method to refer to any potentially impure function.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 85. Publication date: January 2024.

Sound Gradual Verification with Symbolic Execution 85:5

G ∈ Var Variable names

5 ∈ Field Field names

? ∈ Predicate Predicate names

< ∈ Method Method names

(∈ Struct Struct names

= ∈ Z Integers

Π ::= S P M B

S ::= struct ({) 5 }

P ::= ? () G) = q

M ::=) < () G) Φ { B }

Φ ::= requires q ensures q

) ::= (| int | bool | char

B ::= B; B | skip | G = 4 | G = alloc(() |

G =< (4) | assert q | fold ? (4) |

unfold ? (4) | if 4 then B else B |

while 4 invariant q do B

4 ::= ; | G | 4.5 | 4 ⊕ 4 | 4 || 4 | 4 && 4 | !4

; ::= = | null | true | false

⊕ ::= + | - | / | * | == | != | <= | >= | < | >

q ::= q ∗ q | ? (4) | 4 | acc(4.5) |

if 4 then q else q

Fig. 1. Abstract syntax for SVLC0

veri�cation theory – for example, quanti�ed formulas. These extensions are left to future work.
However, we can verify recursive data structures such as linked lists with abstract predicates. Note
that Viper does support quanti�ed formulas and arrays, thus further work is necessary to formally
prove soundness of these capabilities.

We make several simplifying assumptions for SVLC0 programs. All variables are initialized before
they are used, and every execution path for a method body assigns the result variable at its end.
Every program is well-typed; that is, expressions used in if conditions or as boolean operands
will evaluate to bool values, all arguments passed to method parameters will match the de�ned
parameter type, and the value assign to result has type equal to the method’s return type. Finally,
all speci�cations (predicate bodies, loop invariants, and method pre- and post-conditions) are
self-framed, which is a special well-formedness condition from IDF that we de�ne later.
Formulas (speci�cations) in SVLC0 are written in the logic of IDF [Smans et al. 2012] and

recursive predicates [Parkinson and Bierman 2005]. Thus formulas may contain expressions as
well as abstract predicates and accessibility predicates from IDF; formulas may be joined by the
separating conjunction ∗ [Smans et al. 2012]. An accessibility predicate acc(4.5) requires access to
the heap location 4.5 . A predicate instance ? (4) applies the boolean predicate ? to the arguments
4 . An expression 4 requires that 4 evaluates to true. A separating conjunction, as in q1 ∗ q2, acts
like a logical AND for q1 and q2, but also requires the heap locations speci�ed by predicates and
accessibility predicates in q1 to be disjoint from those speci�ed in q2, e.g. acc(G .5) ∗ acc(~.5)
implies G != ~. A conditional formula if 4 then q1 else q2 denotes the validity of q1 when 4

evaluates to true; otherwise it denotes the validity of q2.
Formulas in IDF, and thus in SVLC0, must be self-framed [Smans et al. 2012], which requires

permissions for all heap locations used in a formula to also be in that formula. For example, x.value
== 0 is not self-framed since it references the heap location x.value, but does not assert accessibility
of the �eld x.value. However, acc(x.value) ∗ x.value == 0 is self-framed. We specify rules for
framing and self-framing in §4.3.
Static veri�cation of predicates is done isorecursively [Summers and Drossopoulou 2013], thus

predicate instances must be explicitly folded before they can be asserted. Similarly, predicate bodies
must be explicitly unfolded before asserting the implications of a predicate. This enables static
veri�cation of recursive predicates and simpli�es reasoning about the veri�er’s behavior.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 85. Publication date: January 2024.

85:6 C. Zimmerman, J. DiVincenzo, and J. Aldrich

2.2 Representation

In this section, we formally de�ne the data structures used during static veri�cation of SVLC0
programs.

• A symbolic value a ∈ SValue is an abstract value representing an unknown value, such as an
integer or object reference. We leave the concrete type of SValue unde�ned, but assume that
an in�nite number of distinct new values can be produced by a fresh function.

• A symbolic expression C ∈ SExpr is a symbolic or literal value, or is composed of other symbolic
expressions and operators.

C ::= a | ; | ! C | C1 && C2 | C1 || C2 | C1 ⊕ C2

• A path condition 6 ∈ SExpr is a symbolic expression composed of conjuncts identifying a
particular execution path. Conjuncts are added at every conditional branch during symbolic
execution.

• A �eld chunk ⟨5 , C, C ′⟩ ∈ SField represents, in the symbolic heap, the �eld 5 of an object
reference C containing a value C ′. A heap chunk is roughly approximate to the points to construct
in separation logic [Reynolds 2002]. A predicate chunk ⟨?, C⟩ ∈ SPredicate represents an
isorecursive instance of a predicate ? with arguments C . Together, �eld chunks and predicate
chunks are called heap chunks.

• A symbolic heap H ∈ P(SField ∪ SPredicate) is a �nite set of heap chunks. All heap chunks
that it contains must represent distinct locations in the heap at run time.

• A symbolic state f ∈ SState is a tuple containing a path condition (referenced by 6(f)), a
symbolic heap (referenced by H(f)), and a symbolic environment (referenced by W (f)). A
symbolic state stores all values for a particular point during symbolic execution. The symbol
fempty represents an empty symbolic state, i.e. 6(fempty) = true and H(fempty) = W (fempty) = ∅.

• A veri�cation state Σ represents a particular point during static veri�cation. It is either a special
symbol or a triple ⟨f, B, q̃⟩ consisting of a symbolic state f , a statement B that remains to be
executed, and a formula q̃ that must be asserted after executing B . f (Σ), B (Σ), and q̃ (Σ) are used
to reference a speci�c component of Σ when Σ is not a symbol.

Σ ::= init | final | ⟨f, B, q̃ ⟩

• A valuation+ : SValue → Value is a mapping from symbolic values to concrete values (de�ned
in §4.1). Valuations are implicitly extended to be de�ned for all SExpr, following the structure
of symbolic expressions.
A symbolic expression C implies the symbolic expression C ′ (written C =⇒ C ′) if, for all
valuations + , + (C) = true =⇒ + (C ′) = true. For example, C1 && C2 =⇒ C2. A symbolic
expression C is satis�able, denoted sat(C), if + (C) = true for some valuation + .

2.3 Evaluating Expressions

Symbolic execution evaluates an expression 4 to a symbolic value C using the symbolic state f , and is
denoted by the judgement f ⊢ 4 ⇓ C ⊣ f ′. It also yields a new symbolic state f ′ which may contain a
more speci�c path condition if this particular evaluation short-circuits a boolean operator. Selected
formal rules for symbolic evaluation are given in Figure 2. Literals are evaluated to themselves and
variables are evaluated to the corresponding value in the symbolic store. Some operators, such as
negation and arithmetic operators, are directly translated into a symbolic expression using the
respective operator. In contrast, boolean operators are short-circuiting: when evaluating 41 && 42,
if 41 evaluates to false, then 42 is never evaluated (in this case, 41 == false is added to the path
condition). We de�ne two non-deterministic rules for each binary boolean operator—SEvalAndA
represents the short-circuiting case just described, while SEvalAndB represents the non-short-
circuiting case where 41 is true, so 42 must also be evaluated to determine the result. Finally, �eld

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 85. Publication date: January 2024.

Sound Gradual Verification with Symbolic Execution 85:7

SEvalLiteral

f ⊢ ; ⇓ ; ⊣ f

SEvalVar

f ⊢ G ⇓ W (f) (G) ⊣ f

SEvalNeg
f ⊢ 4 ⇓ C ⊣ f ′

f ⊢ !4 ⇓ ! C ⊣ f ′

SEvalAndA
f ⊢ 41 ⇓ C1 ⊣ f

′

f ⊢ 41 && 42 ⇓ C1 ⊣ f
′ [6 = 6 (f ′) && ! C1]

SEvalAndB
f ⊢ 41 ⇓ C1 ⊣ f

′

f ′ [6 = 6 (f ′) && C1] ⊢ 42 ⇓ C2 ⊣ f
′′

f ⊢ 41 && 42 ⇓ C2 ⊣ f
′′

SEvalField
f ⊢ 4 ⇓ C4 ⊣ f ′ 6 (f ′) =⇒ C4 == C ′4

⟨C ′4 , 5 , C ⟩ ∈ H(f ′)

f ⊢ 4.5 ⇓ C ⊣ f ′

SEvalPCAnd
f ⊢ 41 ↓ C1 f ⊢ 42 ↓ C2

f ⊢ 41 && 42 ↓ C1 && C2 ⊣ f
′′

Fig. 2. Selected symbolic evaluation rules

references are evaluated to the symbolic value contained in their corresponding �eld chunk in the
symbolic heap. Note, a heap chunk for the �eld reference must be in the heap, otherwise evaluation
fails (and ultimately static veri�cation as well), thus the �eld reference must be framed by the
current state.

We also de�ne a judgment of the form f ⊢ 4 ↓ C which symbolically evaluates an expression 4 to
a symbolic expression C without short-circuiting. Thus the judgment is deterministic and does not
update the path condition. Instead, logical operators such as && are encoded directly in the symbolic
expression (compare SEvalPCAnd with SEvalAndA/SEvalAndB in Figure 2). This results in a less
speci�c path condition, but reduces the number of execution paths during symbolic execution. This
matches the evaluation method described in DiVincenzo et al. [2022] for evaluation in formulas,
while the former style is used for evaluation in imperative code.

2.4 Consuming Formulas

Given a symbolic state f and formula q , consuming a formula q �rst asserts that q is established
by f , and second removes the heap chunks in f corresponding to permissions (predicates and
accessibility predicates) in q . The judgment f ⊢ q ▷ f ′ denotes consumption; i.e., q is consumed
from f , resulting in the new symbolic state f ′. See Figure 3 for selected rules.
Consuming an accessibility predicate such as acc(4.5) �rst asserts the predicate has a corre-

sponding �eld chunk in the heap, and second removes the chunk from the heap (SConsumeAcc).
Consuming a predicate similarly looks for and removes the corresponding predicate chunk from
the heap (SConsumePredicate). If any of the chunks are missing from the heap, then veri�cation
fails. Expressions must evaluate to true in the current symbolic execution path. That is, the current
path condition must imply the symbolic value of the expression (SConsumeValue). As mentioned
previously and seen in the aforementioned rule, expressions in formulas are evaluated with the
deterministic evaluation judgment (i.e., not the short-circuiting one), which matches the behav-
ior described in DiVincenzo et al. [2022] and reduces the number of branches generated during
symbolic execution. This di�ers from Viper, which uses a single, short-circuiting eval algorithm
everywhere, including in consume. A separating conjunction, such as q1 ∗ q2, is consumed left-
to-right, i.e. q1 is consumed and then q2 is consumed (SConsumeConjunction). This enforces
the separation of permissions between the two conjuncts – heap chunks necessary to satisfy the
permissions asserted in q1 will be removed before consuming q2, so, if they overlap, consumption
of q2 will fail. Finally, we de�ne consumption of logical conditionals, like if 4 then q1 else q2,
in two non-deterministic rules. In SConsumeConditionalA, 4 is assumed to be true in the path
condition and q1 is consumed. Likewise, in SConsumeConditionalB, 4 is assumed to be false in
the path condition and q2 is consumed.

Note, as we saw in §2.3, evaluation of a �eld access in an expression requires the state to contain
a heap chunk for the �eld. But consume removes heap chunks from the state in a left-to-right
manner thanks to rules SConsumeAcc and SConsumeConjunction. For example, we may want

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 85. Publication date: January 2024.

85:8 C. Zimmerman, J. DiVincenzo, and J. Aldrich

SConsume
f, f ⊢ q ▷ f ′

f ⊢ q ▷ f ′

SConsumeValue
f� ⊢ 4 ↓ C

6 (f) =⇒ C

f, f� ⊢ 4 ▷ f

SConsumeAcc
f� ⊢ 4 ↓ C4

6 (f) =⇒ C4 == C ′4
H(f) = {⟨5 , C ′4 , C ⟩} ⊎ H′

f, f� ⊢ acc(4.5) ▷ f [H = H′]

SConsumePredicate

f� ⊢ 4 ↓ C 6 (f) =⇒ C == C ′

H(f) = {⟨?, C ′ ⟩} ⊎ H′

f, f� ⊢ f [H = H′]

SConsumeConjunction

f, f� ⊢ q1 ▷ f
′

f ′, f� [6 = 6 (f ′)] ⊢ q2 ▷ f
′′

f, f� ⊢ q1 ∗ q2 ▷ f
′′

SConsumeConditionalA
f� ⊢ 4 ↓ C 6′ = 6 (f) && C

f [6 = 6′], f� [6 = 6′] ⊢ q1 ▷ f
′

f, f� ⊢ if 4 then q1 else q2 ▷ f
′

SConsumeConditionalB
f� ⊢ 4 ↓ C 6′ = 6 (f) && ¬C

f [6 = 6′], f� [6 = 6′] ⊢ q2 ▷ f
′

f, f� ⊢ if 4 then q1 else q2 ▷ f
′

Fig. 3. Selected consume rules

to consume the formula acc(4.5) ∗ 4.5 == 0. First, a heap chunk for acc(4.5) is found and removed
from the heap. Then, the resulting state is used to frame and evaluate 4.5 == 0 in the next consume
step. However, the heap chunk for 4.5 was removed from the state so evaluation fails when it
shouldn’t since the original state contained the heap chunk. To solve this issue, we de�ne consume
using an underlying judgment, denoted f, f� ⊢ q ▷ f ′, which asserts and removes permissions
from f while evaluating expressions with the unchanging reference state f� . The state f� is the
symbolic state before consumption. The rule SConsume de�nes the top-level consume judgment
using this new underlying judgment.

Our consume judgment represents the core functionality of DiVincenzo et al. [2022] and Schwer-
ho� [2016]’s consume algorithms. We, of course, ignore unnecessary implementation details like
snapshots, which preserve certain portions of the state that are removed during consume.

2.5 Producing Formulas

Given an initial state f and formula q , producing q adds the information in q into the symbolic state
f , resulting in a new state f ′. The judgment for f ⊢ q ◁ f ′ denotes production; i.e., q is produced
into the state f , resulting in f ′. In particular, produce adds heap chunks representing predicates in q
to the symbolic heap and symbolic expressions representing constraints from boolean expressions
in q to the path condition in a left-to-right manner. Note, each symbolic heap chunk represents a
distinct region of memory at run-time, an invariant that we later prove. Thus overlapping heap
chunks may only occur in symbolic states which represent an unreachable dynamic state and
can safely be ignored. When producing formulas, we use deterministic symbolic evaluation for
expressions, but we introduce separate execution paths for conditionals (similar to §2.4).
Formal rules are given in the supplement [Zimmerman et al. 2024]. These rules capture the

functionality of the produce algorithm speci�ed in DiVincenzo et al. [2022] and Schwerho� [2016].
As noted in the previous section, Schwerho� [2016] uses short-circuiting evaluation in all places,
while we use deterministic evaluation.

2.6 Executing Statements

Now that we have formally de�ned symbolic execution of expressions and formulas, we can put
the pieces together to de�ne symbolic execution of program statements.

We represent the symbolic execution of program statements as small-step execution rules denoted
by the judgment f ⊢ B → B′ ⊣ f ′, where the initial statement B is symbolically executed with the
initial state f , resulting in the state f ′, and then transitions to the next statement B′ with the new
state f ′. Selected formal rules are shown in Figure 4. Executing a variable assignment updates
the symbolic store (SExecAssign); while executing a �eld assignment �rst consumes acc(G .5),
and then adds a new heap chunk for G .5 to the heap that contains G .5 ’s new symbolic value after

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 85. Publication date: January 2024.

Sound Gradual Verification with Symbolic Execution 85:9

SExecAssign
f ⊢ 4 ⇓ C ⊣ f ′ W ′ = W (f) [G ↦→ C]

f ⊢ G = 4; B → B ⊣ f ′ [W = W ′]

SExecAssignField
f ⊢ 4 ⇓ C ⊣ f ′ f ′ ⊢ acc(G.5) ▷ f ′′

H′
= H(f ′′) ∪ {⟨5 , W (f ′′) (G), C ⟩}

f ⊢ G.5 = 4; B → B ⊣ f ′′ [H = H′]

SExecAlloc

C = fresh) 5 = struct(()

H′
= H(f) ∪ {⟨5 , C, default()) ⟩}

f ⊢ G = alloc((); B → B ⊣ f [H = H′]

SExecCall

f ⊢ 4 ⇓ C ⊣ f ′ G = params(<)

f ′ [W = [G ↦→ C]] ⊢ pre(<) ▷ f ′′

C ′ = fresh W ′ = W (f ′) [~ ↦→ C ′]

f ′′ [W = [G ↦→ C, result ↦→ C ′]] ⊢ post(<) ◁ f ′′′

f ⊢ ~ =< (4); B → B ⊣ f ′′′ [W = W ′]

SExecIfA
f ⊢ 4 ⇓ C ⊣ f ′ f ′′

= f ′ [6 = 6 (f ′) && C]

f ⊢ if 4 then B1 else B2; B → B1; B ⊣ f ′′

SExecIfB
f ⊢ 4 ⇓ C ⊣ f ′ f ′′

= f ′ [6 = 6 (f ′) && ! C]

f ⊢ if 4 then B1 else B2; B → B2; B ⊣ f ′′

SExecWhile

f ⊢ q ▷ f ′ G = modi�ed(B) f ′ [W = W (f ′) [G ↦→ fresh]] ⊢ q ◁ f ′′ f ′′ ⊢ 4 ↓ C

f ⊢ while 4 invariant q do B; B′ → B′ ⊣ f ′′ [6 = 6 (f ′′) && ! C]

Fig. 4. Selected symbolic execution rules

the write (SExecAssignField). An alloc(() statement adds a heap chunk for each �eld in (to
the symbolic heap. The new object reference is a fresh value but the new �eld chunks are each
initialized with default values, which re�ects the behavior of C0 (SExecAlloc). Execution rules for
if statements are non-deterministic: given a statement if 4 then B1 else B2, SExecIfA adds 4 to
the path condition and continues execution with B1, while SExecIfB adds ! 4 to the path condition
and continues execution with B2.

Symbolic execution of method calls is modular; i.e., the behavior of the method call is represented
by the method’s pre- and post-conditions (SExecCall). First, the method’s arguments are evaluated
to symbolic values. Then the pre-condition is consumed using a special environment containing
the argument values. A fresh symbolic value is added to represent the return value of the method,
and then the post-condition of the method is produced. The special environment is then replaced
by the original environment, with the addition of the result’s symbolic value. Loops (i.e while
statements) are executed similarly: the loop invariant is consumed, variables modi�ed by the loop
body are set to fresh values in the symbolic store, the loop invariant is produced, and the negated
loop condition is added to the path condition (SExecWhile). Execution of the fold and unfold

statements is also similar to loops and method calls: fold consumes the predicate body and adds a
representative predicate chunk to the symbolic heap, while unfold consumes the predicate instance
(thus removing the predicate chunk from the heap) and produces the predicate body.

2.7 Modularly Verifying Programs

We now de�ne veri�cation of entire programs. We start by de�ning what a program Π is; it is a
quadruple ⟨B, ", %, (⟩ where B is the entry statement of the program," is the set of method names,
% is the set of predicate names, and (is the set of struct names in the program. Then, we de�ne
the judgment Π ⊢ Σ → Σ

′ that speci�es all possible symbolic execution steps that occur during
veri�cation of Π. Selected rules are given in Figure 5.

A veri�cation state Σ is reachable from program Π if Σ = init or Π ⊢ Σ0 → Σ for some reachable
Σ0. The latter judgement only holds when Σ0 is itself reachable.

This judgement includes rules for modular veri�cation. From init, we can begin veri�cation of the
entry statement (SVerifyInit) or of any method (SVerifyMethod). When verifying a method, the

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 85. Publication date: January 2024.

85:10 C. Zimmerman, J. DiVincenzo, and J. Aldrich

SVerifyInit

⟨B, ", %, (⟩ ⊢ init → ⟨fempty, B, true⟩

SVerifyMethod
< ∈ " G = params(<)

fempty [W = [G ↦→ fresh]] ⊢ pre(<) ◁ f

⟨B, ", %, (⟩ ⊢ init → ⟨f, body(<); B, post(<) ⟩

SVerifyLoopBody

Π ⊢ _ → ⟨f0, while 4 invariant q̃ do B; B′, q̃0 ⟩

⟨⊥, W (f0) [G ↦→ fresh], ∅, ∅, 6 (f0) ⟩ ⊢ q̃ ◁ f

G = modi�ed(B) f ⊢ 4 ↓ C ⊣ R

Π ⊢ ⟨f0, while 4 invariant q̃ do B; B′, q̃0 ⟩ →

⟨f [6 = 6 (f) && C], B; skip, q̃ ⟩

SVerifyLoop

Π ⊢ _ → ⟨f0, while 4 invariant q̃ do B; B′, q̃0 ⟩

f0 ⊢ q̃ ▷ f
′
0, _ f ′

0 [W = W (f0) [G ↦→ fresh]] ⊢ q̃ ◁ f ′′
0

G = modi�ed(B)

Π ⊢ ⟨f0, while 4 invariant q̃ do B; B′, q̃0 ⟩ →

⟨f0, while 4 invariant q̃ do B; B′, q̃0 ⟩

SVerifyStep
Π ⊢ _ → ⟨f, B, q ⟩ f ⊢ B → B′ ⊣ f ′

Π ⊢ ⟨f, B, q ⟩ → ⟨f ′, B′, q ⟩

SVerifyFinal
Π ⊢ _ → ⟨f, skip, q ⟩ f ⊢ q ▷ f ′,

Π ⊢ ⟨f, skip, q ⟩ → final

Fig. 5. Selected verification rules

method’s post-condition is used as the formula of the veri�cation state. After completely executing
the method’s body, i.e. having reached skip, we consume the formula contained in the veri�cation
state (SVerifyFinal), which is the method’s post-condition.
We modularly verify loop bodies following a similar pattern. As described in §2.6, symbolic

execution steps over loop bodies in the same way it steps over method calls. However, we introduce
a veri�cation rule (SVerifyLoopBody) that allows symbolic execution of a loop body, beginning
with a new symbolic state. We reuse the symbolic store from the initial symbolic state, except that
all variables modi�ed by the loop body are replaced by fresh values. Veri�cation proceeds similar
to method veri�cation, except that we use the loop invariant for the formula of the new veri�cation
state—we produce the loop invariant, symbolically execute the loop body, and �nally consume the
loop invariant. Thus symbolic execution, which steps over the loop, ensures that the loop invariant
holds for the initial iteration, while this veri�cation rule ensures that the loop invariant is preserved
after every iteration.

We also include another veri�cation rule for loops, SVerifyLoop, in order to match the behavior
of Gradual C0. This rule and its correspondence with Gradual C0 is described further in §7.2.

Statements are executed by symbolic execution as described in §2.6. Given a reachable veri�cation
state ⟨f, B, q⟩ and the symbolic execution f ⊢ B → B′ ⊣ f ′, the state ⟨f ′, B′, q⟩ is reachable, i.e.
Π ⊢ ⟨f, B, q⟩ → ⟨f ′, B′, q⟩.

2.8 Example

We now illustrate veri�cation of the append method de�ned in Figure 6, which appends a given
value to the end of a list using recursion. The append method is ensured to be memory safe and
preserve acyclicity of the list through veri�cation. We begin with an empty state and initialize all
parameters with fresh values:

f1 = ⟨∅, W, true⟩ W = [l ↦→ a1, v ↦→ a2]

Then the pre-condition acyclic(l) * l != NULL is produced:

f2 = ⟨{⟨acyclic, a1 ⟩}, W, a1 != null⟩

Unfolding acyclic(l) (line 17) consumes the predicate from the state and produces its body. The
body of acyclic(l) contains a logical conditional resulting in two possible execution paths for
produce – one where a4 is null and one where a4 is not null, where a4 is the symbolic value for
l.next:

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 85. Publication date: January 2024.

Sound Gradual Verification with Symbolic Execution 85:11

1 struct List { int value; List next }

2
3 predicate acyclic(List l) =

4 acc(l.value) * acc(l.next) *

5 (if l.next == NULL then true

6 else acyclic(l.next))

7
8 List singleton(int value)

9 requires true

10 ensures (acyclic(result) *

11 result != NULL)

12 { · · · }

13 List append(List l, int value)

14 requires acyclic(l) * l != NULL

15 ensures acyclic(result) * result != NULL

16 {

17 unfold acyclic(l);

18 if (l.next == NULL)

19 n = singleton(value);

20 else

21 n = append(l.next , value);

22 l.next = n;

23 fold acyclic(l);

24 result = l;

25 }

Fig. 6. Code and supporting declarations for appending to an acyclic linked list

17 unfold acyclic(l);

f�3 = ⟨{⟨value, a1, a3 ⟩, ⟨next, a1, a4 ⟩}, W, a1 != null && a4 == null⟩

f�3 = ⟨{⟨value, a1, a3 ⟩, ⟨next, a1, a4 ⟩, ⟨acyclic, a4 ⟩}, W, a1 != null && a4 != null⟩

We follow both execution paths, using color-coding to distinguish them. Next, when executing the
if statement (line 18), we �rst evaluate the condition. Since l.next is framed by the state, evaluation
of the condition succeeds and execution branches along the if. We �rst consider executing the
then branch of the if, where a4 == null is added it to the path condition:
18 if (l.next == NULL)

f�4 = ⟨· · · , · · · , a1 != null && a4 == null && a4 == null⟩

f�4 = ⟨· · · , · · · , a1 != null && a4 != null && a4 == null⟩

However, the path condition a1 != null && a4 != null && a4 == null is unsatis�able, thus we can
safely prune this execution path and only continue with the �rst. We proceed to symbolically
execute the call to singleton (line 19) by consuming the (empty) pre-condition, and producing the
post-condition. The result is represented by a fresh symbolic value a5:
19 n = singleton(value);

f�5 = ⟨{⟨value, a1, a3 ⟩, ⟨next, a1, a4 ⟩, ⟨acyclic, a5 ⟩}, W [n ↦→ a5], a1 != null && a4 == null && a5 != null⟩

Symbolic execution of this path then jumps to line 22, but to preserve code order we now demon-
strate veri�cation of the else branch (line 20). To do this, we use states f�3 and f�3, and add the
negation of the condition to verify the else body:
20 else

f ′
�4

= ⟨· · · , · · · , a1 != null && a4 == null && a4 != null⟩

f ′
�4

= ⟨{⟨value, a1, a3 ⟩, ⟨next, a1, a4 ⟩, ⟨acyclic, a4, }⟩, W, a1 != null && a4 != null⟩

Here again this results in an unsatis�able path condition a1 != null &&a4 == null &&a4 != null, so
we prune that path. We continue with the other path and execute the recursive call to append (line
21), which consumes the pre-condition (removing ⟨acyclic, a4⟩) and produces the post-condition,
using the fresh value a6 to represent the result (adding ⟨acyclic, a6⟩):
21 n = append(l.next , value);

f ′
�5

= ⟨{⟨value, a1, a3 ⟩, ⟨next, a1, a4 ⟩, ⟨acyclic, a6 ⟩}, W [n ↦→ a6], a1 != null && a4 != null && a6 != null⟩

Now we have completed verifying both branches of the if statement. Note that we do not actually
join execution at this point; instead, we jump to line 22 immediately after executing the program
up to f�5 and f ′

�5 along both paths. We follow both of these paths for the rest of veri�cation. The

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 85. Publication date: January 2024.

85:12 C. Zimmerman, J. DiVincenzo, and J. Aldrich

�eld assignment on line 22 consumes acc(l.next) and produces a new corresponding heap chunk
with n’s value:
22 l.next = n;

f�6 = ⟨{⟨value, a1, a3 ⟩, ⟨next, a1, a5 ⟩, ⟨acyclic, a5 ⟩}, W [n ↦→ a5], a1 != null && a4 == null && a5 != null⟩

f ′
�6

= ⟨{⟨value, a1, a3 ⟩, ⟨next, a1, a6 ⟩, ⟨acyclic, a6 ⟩}, W [n ↦→ a6], a1 != null && a4 != null && a6 != null⟩

Folding acyclic results in twice the number of execution paths since it consumes acylic(l)’s
body, which includes an logical conditional. However, again, information from the path conditions
in f�6 and f ′

�6 allow us to prune some of these paths. We elide these pruned paths and only show
the taken ones. After consuming acyclic(l)’s body, execution produces acyclic(l) into the
state:
23 fold acyclic(l);

f�7 = ⟨{⟨acyclic, a1 ⟩}, W [n ↦→ a5], a1 != null && a4 == null && a5 != null⟩

f ′
�7

= ⟨{⟨acyclic, a1 ⟩}, W [n ↦→ a6], a1 != null && a4 != null && a6 != null⟩

24 result = l;

f�8 = ⟨{⟨acyclic, a1 ⟩}, W [n ↦→ a5, result ↦→ a1], a1 != null && a4 == null && a5 != null⟩

f ′
�8

= ⟨{⟨acyclic, a1 ⟩}, W [n ↦→ a6, result ↦→ a1], a1 != null && a4 != null && a6 != null⟩

Finally, in both f�8 and f ′
�8, we can consume the post-condition acyclic(result) * result !=

NULL. Therefore, we have veri�ed all possible symbolic execution paths of append’s body, and thus
veri�ed append.

3 GVLC0

SVLC0 re�ects the core components of Viper—eval, consume, produce, and exec. We now formally
de�ne GVLC0, an extension of SVLC0 which supports gradual speci�cations. We then de�ne static
veri�cation for GVLC0 that allows optimistic assumptions to satisfy proof goals and generates
checks to be veri�ed at run time to cover these assumptions as in DiVincenzo et al. [2022].
Note, the syntax of GVLC0 di�ers slightly from that of GVC0 (the frontend for Gradual C0),

particularly with its omission of C-style pointers. However, due to the restrictions of C0, all usages
of pointers in C0 can be translated to use object references. This and other translations are done by
Gradual C0 during its conversion to an intermediate language Gradual Viper, which is used in the
backend veri�er. In order to simplify our model, GVLC0 is very similar to the language of GVC0,
but incorporates elements of the Gradual Viper language when this simpli�es the de�nition of our
veri�cation algorithm.

3.1 Gradual Formulas

We �rst extend the syntax of our language to include imprecise formulas—formulas of the form
? ∗ q . An imprecise formula may represent any logically consistent strengthening of the precise
portion q [Wise et al. 2020]. For example, the imprecise formula ? ∗G > 0 consistently implies G == 2,
but does not consistently imply G == 0. Then, a gradual formula q̃ may be precise or imprecise,
and gradual programs are programs that contain gradual formulas. The abstract syntax of GVLC0
extends SVLC0’s syntax with gradual formulas:

P ::= ? () G) = q̃

Φ ::= requires q̃ ensures q̃

B ::= · · · | while 4 invariant q̃ do B

q̃ ::= q | ? ∗ q

Note, imprecise formulas are always considered self-framed, because they can always be strength-
ened to be self-framing. Therefore we require all method pre- and postconditions, loop invariants,
and predicate bodies to be speci�cations—formulas which are either imprecise or self-framed.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 85. Publication date: January 2024.

Sound Gradual Verification with Symbolic Execution 85:13

Also, note that IDF is particularly well-suited for gradual speci�cations, in comparison to sepa-
ration logic [Reynolds 2002], since IDF allows separately specifying access permission and heap
values. This allows speci�cation of heap values while leaving more complex accessibility assertions
unspeci�ed, as in the formula ? ∗ x.f != null.

3.2 Representation

In this section we extend the data structures from §2.2 to support imprecise states—states in which
it is permissible to make optimistic assumptions—and de�ne our representation of run-time checks.

• A symbolic state f is now a quintuple ⟨], H, H , W, 6⟩ where] is an imprecise �ag, H is a precise
heap,H is an optimistic heap, W is the symbolic store, and 6 is the path condition. As before, we
use the notation] (f), H(f), etc. to reference speci�c components of a symbolic state. W and 6
are de�ned in §2.2 but we rede�ne the other components.

• An imprecise �ag] ∈ {⊤,⊥} is a �ag indicating whether a symbolic state is imprecise (⊤)
or precise (⊥).] (f) denotes that] (f) = ⊤ (and thus f is an imprecise state), while ¬] (f)
denotes that an] (f) = ⊥ (and thus f is precise). Imprecise states are produced by consuming or
producing an imprecise speci�cation. Once imprecise, a state always remains imprecise.

• A precise heap H is a symbolic heap as described in section 2.2. Thus it is a �nite set of heap
chunks where all heap chunks represent distinct locations in the heap at run time.

• An optimistic heap H is a �nite set of �eld chunks. Field chunks contained in the optimistic
heap may represent the same location in the heap at run time, i.e. the optimistic heap does not
preserve the separation invariant like the precise heap. The optimistic heap of a well-formed
symbolic state must be empty unless it is an imprecise state.

3.3 Run-Time Checks

A run-time check A ∈ SCheck denotes an assertion that validates assumptions made during static
veri�cation of imprecise programs. It is a symbolic expression, symbolic permission, pair of symbolic
permission sets, or ⊥:

A ::= C | \ | sep(Θ1,Θ2) | ⊥

A set of run-time checks is denoted R ∈ P(SCheck). In a run-time check, a symbolic expression
C asserts that the value represented by C at run time is true, a symbolic permission \ asserts
ownership of a �eld or a predicate instance, and a pair sep(Θ1,Θ2) asserts that the sets of permissions
represented by Θ1 and Θ2 are disjoint. ⊥ represents a static veri�cation failure. We represent static
veri�cation failure as an unsatis�able run-time check, instead of failing veri�cation entirely, to
accommodate imprecision.

Note that our run-time checks contain symbolic values. This is unlike Gradual C0 [DiVincenzo
et al. 2022], where checks produced have their symbolic values replaced by corresponding program
variables. This replacement is needed to support the implementation of run-time checks and adds
a signi�cant amount of complexity to their algorithms. Fortunately, as we will see later, we can
abstract away this connection of symbolic values to program variables (aka. concrete values) using
valuations; and so we can produce abstracted checks here, avoiding additional complexity in our
formalism. Additionally, at each branch point DiVincenzo et al. [2022] check whether all possible
branches fail and, if so, halt static veri�cation. We do not specify this behavior; however, this is
possible by checking for ⊥ ∈ R at each step of symbolic execution.

3.4 Evaluating Expressions

We now extend our previous judgement for symbolic evaluation from §2.3 to allow optimistic
symbolic evaluation of expressions. We specify a set R of run-time checks necessary for a given
evaluation, thus our judgement is now f ⊢ 4 ⇓ C ⊣ f ′, R.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 85. Publication date: January 2024.

85:14 C. Zimmerman, J. DiVincenzo, and J. Aldrich

SEvalFieldOptimistic
f ⊢ 4 ⇓ C4 ⊣ f ′, R

� ⟨5 , C ′4 , C ⟩ ∈ H(f ′) : 6 (f ′) =⇒ C ′4 == C4
⟨5 , C ′4 , C ⟩ ∈ H(f ′) 6 (f ′) =⇒ C ′4 == C4

f ⊢ 4.5 ⇓ C ⊣ f ′, R

SEvalFieldImprecise
] (f) f ⊢ 4 ⇓ C4 ⊣ f ′, R

� ⟨5 , C ′4 , C ⟩ ∈ H(f ′) ∪ H(f ′) : 6 (f ′) =⇒ C ′4 == C4
C = fresh H′

= H(f) ∪ {⟨5 , C4 , C ⟩}

f ⊢ 4.5 ⇓ C ⊣ f ′ [H = H′], R ∪ {⟨C4 , 5 ⟩}

SEvalFieldFailure
¬] (f) f ⊢ 4 ⇓ C4 ⊣ f ′, R � ⟨5 , C ′4 , C ⟩ ∈ H(f ′) ∪ H(f ′) : 6 (f ′) =⇒ C ′4 == C4

f ⊢ 4.5 ⇓ fresh ⊣ f ′, {⊥}

Fig. 7. Selected rules for evaluation during gradual verification

Field chunks may be referenced in the optimistic heap by SEvalFieldOptimistic in Figure 7.
These �eld chunks have already been validated, thus we do not need additional run-time checks. A
�eld may also be optimistically evaluated by SEvalFieldImprecise, even if it does not exist in H

or H . This adds a new �eld chunk with a fresh value to H . This requires a run-time check which
asserts permission to access the �eld. Finally, SEvalFieldFailure applies in a precise state when a
�eld is referenced but no matching heap chunk exists. This results in a failure of static veri�cation,
represented by ⊥, for that execution branch.

We also modify the existing set of rules described in §2.3 to collect run-time checks from recursive
evaluations. Likewise, we modify the deterministic evaluation judgement to add similar rules as
those described above, allowing it to also generate run-time checks, thus its form is f ⊢ 4 ↓ C ⊣ R.

3.5 Consuming Formulas

We extend our previous judgment for consuming formulas from §2.4 to handle imprecise formulas
and imprecise states. As in §3.4, we add a parameter R to the consume judgments. Additionally, we
collect all permissions for the given formula into a set of symbolic permissions Θ so that separation
checks may be added where necessary. Thus the new judgments are of the form f ⊢ q̃ ▷ f ′, R

and f, f� ⊢ q̃ ▷ f ′, R, Θ; these two forms are related by SConsume and correspond to the forms
described in §2.4. We list selected rules in Figure 8.

Consuming an imprecise formula empties the precise and optimistic heaps (SConsumeImprecise).
This is because the imprecision may represent access to arbitrary �elds. For example, a method with
an imprecise precondition could modify any �eld that the callee owns, thus we cannot make any
assumptions about �eld permissions or values after the method returns. Consuming an imprecise
formula results in an imprecise state, thus removed �eld chunks can be referenced optimistically,
with the possible addition of a run-time check.

We must also consider the case of consuming an imprecise formula in a precise state. Since
optimistic assumptions are not permitted in a precise state, we cannot assume any of the assertions
contained in the imprecise formula. However, the imprecise formula may reference �elds without
a corresponding accessibility predicate. Thus, when consuming an imprecise formula, we use an
imprecise state as the symbolic state for evaluation, but use the original (possibly precise) state for
assertions.
In an imprecise state we may optimistically consume an expression, even if it is not implied by

the current path condition. We then add the value as a run-time check to be asserted at run-time.
Consumption of accessibility predicates must be modi�ed to handle imprecise states, where �eld

chunks inH may overlap with �eld chunks in H. We must remove all �elds that may represent the
same heap reference when removing a �eld chunk from H. To do this, we use the helper functions
remfp and remf . remfp is used when removing heap chunks from the precise heap. For precise
states, remfp removes the �eld chunk that coincides exactly with the heap location being consumed

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 85. Publication date: January 2024.

Sound Gradual Verification with Symbolic Execution 85:15

SConsume

f, f� ⊢ q̃ ▷ f ′, R, Θ

f ⊢ q̃ ▷ f ′, R

SConsumeImprecise
f, f� [] = ⊤] ⊢ q ▷ f ′, R, Θ

f, f� ⊢ ? ∗ q ▷ ⟨⊤, 6 (f ′), W (f ′), ∅, ∅⟩, R, Θ

SConsumeValueImprecise
] (f) f� ⊢ 4 ↓ C ⊣ R 6 (f) Y=⇒ C

f, f� ⊢ 4 ▷ f [6 = 6 (f) && C], R ∪ {C }, ∅

SConsumeValueFailure
¬] (f) f� ⊢ 4 ↓ C ⊣ R 6 (f) Y=⇒ C

f, f� ⊢ 4 ▷ f, {⊥}, ∅

SConsumeAcc
f ⊢ 4 ↓ C4 ⊣ R 6 (f) =⇒ C ′4 == C4

⟨5 , C ′4 , C ⟩ ∈ H(f)

H′
= remfp (H(f), f, C4 , 5)

H′
= remf (H(f), f, C4 , 5)

f ′
= f [H = H′,H = H′]

f, f� ⊢ acc(4.5) ▷ f ′, R, {⟨C4 , 5 ⟩}

SConsumeAccOptimistic
f ⊢ 4 ↓ C4 ⊣ R 6 (f) =⇒ C ′4 == C4

� ⟨5 , C ′4 , C ⟩ ∈ H(f) : 6 (f) =⇒ C ′4 == C4
⟨5 , C ′4 , C ⟩ ∈ H(f)

H′
= remf (H(f), f, C4 , 5)

H′
= remf (H(f), f, C4 , 5)

f ′
= f [H = H′,H = H′]

f, f� ⊢ acc(4.5) ▷ f ′, R, {⟨C4 , 5 ⟩}

SConsumeAccImprecise
] (f) f ⊢ 4 ↓ C4 ⊣ R

� ⟨5 , C ′4 , C ⟩ ∈ H(f) ∪ H(f) : 6 (f) =⇒ C ′4 == C4
f ′

= f [H = remf (H(f), f, C4 , 5),H = remf (H(f), f, C4 , 5)]

f, f� ⊢ acc(4.5) ▷ f ′, R ∪ {⟨C4 , 5 ⟩}, {⟨C4 , 5 ⟩}

SConsumeAccFailure
¬] (f) f ⊢ 4 ↓ C4 ⊣ R

� ⟨5 , C ′4 , C ⟩ ∈ H(f) ∪ H(f) : 6 (f) =⇒ C ′4 == C4

f, f� ⊢ acc(4.5) ▷ f, {⊥}, {⟨C4 , 5 ⟩}

Fig. 8. Selected rules for consuming gradual formulas

(thus computing the same result as the rules in §2.4). For imprecise states, it also removes all �eld
chunks that could possibly coincide with the speci�ed heap location. remf is used when removing
chunks from the optimistic heap and behaves similarly, but also removes all predicate chunks, since
predicates occurring in the precise heap could overlap with heap chunks in the imprecise heap.
Some optimizations could be made – for instance, if a predicate’s unfolding will never reference a
�eld 5 , we could preserve an instance of this predicate when consuming acc(4.5). However, we
leave such optimizations to future work.
We can also optimistically assume an accessibility predicate in an imprecise state, even if a

matching �eld chunk does not exist in H or H . Since this assumes ownership of the �eld, we
add the corresponding symbolic permission to R. Finally, like accessibility predicates, we allow
optimistic consumption of predicate instances. In this case the symbolic permission representing
the predicate instance is added as a run-time check.
When consuming any accessibility predicate or predicate instance, the symbolic permission

is always added to a set Θ. This allows speci�cation of checks for separation. When consuming
acc(G .5) ∗ acc(~.5), if acc(G .5) is optimistically assumed while acc(~.5) is statically veri�ed, the
run-time check for acc(G .5) does not imply that its permission is disjoint from that of~.5 . Therefore
additional checks for separation are added when consuming a separating conjunction such as q1∗q2.
If no run-time check for permissions exists, all permissions must have been consumed from H or
H and thus separation may be assumed. However, if a symbolic permission is contained in R we
can no longer assume separation. Thus we add a run-time check sep(Θ1,Θ2) where Θ1 is the set of
symbolic permissions collected while consuming q1 and likewise for Θ2 and q2.

3.6 Producing Formulas

Since a formula is only produced when we can assume its validity, producing a gradual formula
does not require any optimistic assumptions, thus we do not need to calculate any run-time checks.
When producing an imprecise formula, we produce the precise portion and set] = ⊤. All other
rules from §2.5 are left unchanged.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 85. Publication date: January 2024.

85:16 C. Zimmerman, J. DiVincenzo, and J. Aldrich

SGuardAssign
f ⊢ 4 ⇓ _ ⊣ f ′, R

⟨f, G = 4; B, q̃ ⟩ ⇀ f ′ ⊣ R, ∅

SGuardAssignField
f ⊢ 4 ⇓ _ ⊣ f ′, R

f ′ ⊢ acc(G.5) ▷ f ′′, R′

⟨f, G .5 = 4; B, q̃ ⟩ ⇀ f ′′ ⊣ R ∪ R′, ∅

SGuardCall

f ⊢ 4 ⇓ C ⊣ f ′, R G = params(<)

f ′ [W = [G ↦→ C]] ⊢ pre(<) ▷ f ′′, R′

⟨f, ~ =< (4); B, q̃ ⟩ ⇀ f ′′ ⊣

R ∪ R′, rem(f ′′, pre(<))

rem(f, q̃) :=





∅ if q̃ is completely precise

{⟨?, C ⟩ : ⟨?, C ⟩ ∈ H(f) } ∪

{⟨C, 5 ⟩ : ⟨5 , C, C ′ ⟩ ∈ H(f) ∪ H(f) } otherwise

Fig. 9. Selected guard rules

1 List append(List l, int value)

2 requires ? * true

3 ensures ? * acyclic(result)

4 {

5 if (l.next == NULL)

6 n = singleton(value);

7 else

8 n = append(l.next , value);

9 l.next = n;

10 result = l;

11 }

Fig. 10. GVLC0 code for appending to an acyclic linked list

3.7 Executing Statements

All rules from §2.6 are left unchanged. While it may seem natural to calculate run-time checks
while determining execution transitions (as in the exec algorithm of DiVincenzo et al. [2022]),
we found that this unnecessarily complicates statements of soundness since symbolic execution
steps are not equivalent to dynamic execution steps. For example, a method call occurs in one
step during symbolic execution but may never complete during dynamic execution, therefore it
may be impossible to determine which symbolic execution step applies. However, assertion of
run-time checks must occur before a dynamic execution step may proceed. Therefore we cleanly
delineate between symbolic execution transitions, speci�ed by the judgement f ⊢ B → B′ ⊣ f ′, and
the calculation of run-time checks.

3.8 Guarding Execution

As described above, we must the assert run-time checks before the corresponding dynamic execution
step occurs. Therefore we de�ne guard judgements to calculate run-time checks which ensure that
execution can safely proceed. A guard for a method call calculates the checks necessary to ensure
that the method’s pre-condition is satis�ed, while a guard for a �eld assignment calculates the
checks necessary to ensure permission to access the assignee and evaluate the value to be stored.
A guard judgement Σ ⇀ f ′ ⊣ R, Θ denotes that, at the execution state represented by Σ, when

the execution path matches the path condition in f ′, the run-time checks R must be checked.
Selected guard rules are de�ned in Figure 9.
In a guard judgement, Θ determines the exclusion frame—a set of permissions which must not

escape the executing method’s context. Its necessity and behavior is explained in §8.

3.9 Example

We now illustrate veri�cation of the gradually-speci�ed method in Figure 10. We assume the
de�nition of List and acyclic from Figure 6. The gradual speci�cation of append ensures that all
returned lists are acyclic.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 85. Publication date: January 2024.

Sound Gradual Verification with Symbolic Execution 85:17

Symbolic states are tuples of the form ⟨], H, H , W, 6⟩. As in §2.8, we begin veri�cation of append
by assigning fresh symbolic values to all parameters and producing the pre-condition ? ∗ true,
which results in an imprecise state:

f1 = ⟨⊤, ∅, ∅, W, true⟩ W = [l ↦→ a1, v ↦→ a2]

At each statement we compute the guard to �nd the necessary run-time checks. The guard for
the if statement at line 5 evaluates l.next == NULL. A heap chunk for l.next is optimistically
added toH with a fresh value a3. This also results in a run-time check for the symbolic permission
⟨a1, next⟩.
The next state f�2 is computed by symbolic execution. This again evaluates l.next == NULL in the
state f1, which again requires the addition of an optimistic heap chunk. Since a3 was not previously
used in f1 it can be used again as a fresh value for symbolic execution.

R = {⟨a1, next⟩ }

5 if (l.next == NULL)

f�2 = ⟨⊤, ∅, {⟨next, a1, a3 ⟩}, W, a3 == null⟩

The guard for line 6 consumes the pre-condition of singleton, which requires no run-time checks.
Symbolic execution consumes the same pre-condition and produces the post-condition; here we
use the fresh value a4 for the returned value:

R = ∅

6 n = singleton(value);

f�3 = ⟨⊤, {⟨acyclic, a4 ⟩}, {⟨next, a1, a3 ⟩}, W [n ↦→ a4], a3 == null⟩

As in §2.8, we follow code order, instead of following each execution path individually, and dis-
tinguish separate execution paths with color-coding. The guard at line 5 computes the checks for
both branches of if, thus the guard is not computed at line 7. We can symbolically execute the
else branch by adding the negation of the path condition we used previously:
7 else

f�2 = ⟨⊤, ∅, {⟨next, a1, a3 ⟩}, W, a3 != null⟩

The guard for line 8 consumes the pre-condition of append, which is ? ∗ true. Since the body
of this imprecise formula is only true, no run-time checks are necessary. However, since this is
an imprecise formula, we clear the precise and optimistic heaps (SConsumeImprecise in Figure
8). Symbolic execution then produces the post-condition; here we use the fresh value a5 for the
returned value:

R� = ∅

8 n = append(l.next , value);

f�3 = ⟨⊤, {⟨acyclic, a5 ⟩}, ∅, W [n ↦→ a5], a3 != null && a5 != null⟩

We resume symbolic execution of both paths at line 9. Executing l.next = n in the state f�3 does
not require any run-time checks since it contains the heap chunk representing l.next. However,
executing the same statement in f�3 requires optimistic assumption of the symbolic permission
⟨next, a1⟩ which requires a run-time check and removes the predicate instance. DiVincenzo et al.
[2022] describe the implementation of such conditional run-time checks, but here we represent it
with separate symbolic execution paths:

R� = ∅ , R� = {⟨next, a1 ⟩}

9 l.next = n;

f�4 = ⟨⊤, {⟨acyclic, a4 ⟩}, {⟨next, a1, a4 ⟩}, W [n ↦→ a4], a3 == null⟩

f�4 = ⟨⊤, {⟨next, a1, a5 ⟩}, ∅, W [n ↦→ a5], a3 != null && a5 != null⟩

R� = ∅ , R� = ∅

10 result = l;

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 85. Publication date: January 2024.

85:18 C. Zimmerman, J. DiVincenzo, and J. Aldrich

f�5 = ⟨⊤, a3 == null, {⟨acyclic, a4 ⟩}, {⟨next, a1, a4 ⟩}, W [n ↦→ a4, result ↦→ a1] ⟩

f�4 = ⟨⊤, a3 != null && a5 != null, {⟨next, a1, a5 ⟩}, ∅, W [n ↦→ a5, result ↦→ a1] ⟩

Finally, the applicable guard at line 11 consumes the post-condition acyclic(result). Since
neither state contains a matching predicate instance, in both paths a run-time check is added for
the symbolic permission ⟨acyclic, a1⟩:

R� = {⟨acyclic, a1 ⟩} , R� = {⟨acyclic, a1 ⟩}

11 }

Now we have veri�ed the method and computed all necessary run-time checks.

4 EXECUTING GVLC0

Since soundness of static veri�cation requires speci�cation of program execution, we de�ne execu-
tion semantics for GVLC0 programs (including SVLC0 programs, which are a subset). This includes
dynamic semantics for formulas, and execution semantics which dynamically assert the validity of
every speci�cation. Therefore, these semantics de�ne valid execution for GVLC0 programs.
As explained in §1, execution semantics are based on those of C0 [Arnold 2010], while the

semantics of formulas are based on those of GVLRP [Wise et al. 2020].

4.1 Representation

In this section, we formally de�ne the data structures used during execution of GVLC0 programs:

• A value E ∈ Value is an integer, boolean, or object reference.
• An object reference ℓ ∈ Ref is an identi�er for a particular object. As with symbolic values, we
assume that an in�nite number of distinct values can be generated by the fresh function. The
type of value represented by fresh is disambiguated by its usage.

• An environment d is a partial function mapping variable names to values, i.e. d : Var ⇀ Value.
• A heap � : Ref × Field → Value is a function mapping object reference and �eld pairs to
values. We assume that the heap function is total, i.e. all reference and �eld pairs have some
corresponding value, but heap access is restricted during execution by a set of access permissions

U ∈ P(Ref × Field). This re�ects the semantics of IDF [Smans et al. 2012]. A heap location
⟨ℓ, 5 ⟩ is owned if it is contained in the currently-applicable set of access permissions.

• A stack frame is a triple ⟨U, d, B⟩ containing of a set of owned permissions U , a local environment
d , and a statement B . A stack S is a list of stack frames – either ⟨U, d, B⟩ · S for some other S,
or the empty stack, denoted nil. For a non-empty stack S, U (S), d (S), and B (S) refer to their
respective components of the head element.

• A dynamic state Γ may be a symbol init or final, or pair ⟨�, S⟩ containing a heap � and a
non-empty stack S. � (Γ) and S(Γ) reference individual components of Γ when Γ is not a
symbol, while U (Γ), d (Γ), and B (Γ) reference a component of the head element of S(Γ). U (init)
and � (init) are de�ned to be ∅.

4.2 Evaluating Expressions

Given a heap � and environment d , the evaluation of expression 4 to a value E is represented
by a judgement of the form ⟨�, d⟩ ⊢ 4 ⇓ E . This follows standard evaluation rules—variables are
evaluated to the corresponding value in d and �eld references are evaluated to the corresponding
value in � . The boolean operators && and || are short-circuiting—when evaluating 41 && 42, 42 is
only evaluated when 41 is not true.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 85. Publication date: January 2024.

Sound Gradual Verification with Symbolic Execution 85:19

4.3 Asserting Formulas

A judgement of the form ⟨�, U, d⟩ ⊨ q̃ denotes that a gradual formula q̃ is satis�ed given a heap
� , a set of accessible permissions U , and an environment d . Selected rules are shown in Figure 11.
Boolean expressions are satis�ed when they evaluate to true. An accessibility predicate acc(4.5)
is satis�ed when the �eld referenced by 4.5 is in the set of accessible permissions. A predicate
instance ? (4) is satis�ed when the predicate body is satis�ed using an environment mapping each
predicate parameter G to the corresponding argument 4 . A separating conjunction q1 ∗q2 is satis�ed
when q1 is satis�ed using a permission set U1 and q2 is satis�ed using a permission set U2, where
U1 and U2 are disjoint subsets of U . Finally, an imprecise formula ? ∗ q is satis�ed exactly when q is
satis�ed.
A judgement of the form ⟨�, U, d⟩ ⊢frm 4 denotes that the expression 4 is framed by the given

set of permission U . This denotes that all heap locations necessary to evaluate 4 are included in U .
Selected rules are shown in Figure 11.
Note that a predicate instance ? (4) is satis�ed i� the predicate body is satis�ed. Thus dynamic

execution of GVLC0 uses equirecursive semantics for predicates [Summers and Drossopoulou 2013].
We also de�ne equirecursive framing of formulas by the judgement ⟨�, U, d⟩ ⊢frmE q̃ . A formula is
equirecursively framed if its unrolling, the recursive expansion of referenced predicate bodies, is
framed.
A formula q̃ is self-framed if ∀�, U, d : ⟨�, U, d⟩ ⊨ q̃ =⇒ ⟨�, U, d⟩ ⊢frmE q̃ . As speci�ed in

§3.1, a speci�cation is a formula which is imprecise or self-framed.

4.4 Footprints

The footprint of a formula is the set of permissions necessary to assert a formula [Reynolds 2002].
There are two types of footprints for gradual formulas:

The exact footprint of a formula is the minimal set of permissions necessary to assert and frame a
formula. Given a heap � and environment d , Tq̃U⟨�, d ⟩ denotes the exact footprint of a formula q̃ .

The maximal footprint (often abbreviated to footprint) of a formula contains the exact footprint
and all permissions that are consistently implied by the formula. The maximal footprint of a
completely precise formula is its exact footprint, but the maximal footprint of an imprecise formula
contains all accessible permissions. Given a heap � , set of owned permissions U , and environment
d , ⌊q̃⌋ ⟨�,U, d ⟩ denotes the maximal footprint of a formula q̃ .

4.5 Executing Statements

We represent the dynamic execution of program statements as small-step execution semantics
denoted by the judgement ⟨�, S⟩, Û → ⟨�, S⟩, where the statement B is executing with the initial
state ⟨�, S⟩, and then transitions to the next statement B′ with the new state ⟨�, S⟩. Û speci�es
the exclusion frame, which is described below. Selected rules are shown in Figure 11. Execution
will be stuck (i.e., no further derivation will apply) when an error is encountered. For example,
execution is stuck when a formula is not satis�ed or if some expression is not framed.

A method call is executed by evaluating all arguments, asserting the pre-condition, and adding
a new stack frame containing the footprint of the pre-condition and the method body. After the
method body is completely executed, the post-condition is asserted and the result value in the
callee’s environment is passed to the caller’s environment.

A loop is executed similarly to a method, but uses the loop invariant instead of a method contract.
When the loop condition is true, an iteration is executed by asserting the invariant and adding
a new stack frame for the loop body. When the body is complete, we return to the original loop
statement, allowing further iterations as long as the condition remains true. When the condition is

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 85. Publication date: January 2024.

85:20 C. Zimmerman, J. DiVincenzo, and J. Aldrich

AssertImprecise
⟨�, U, d ⟩ ⊨ q ⟨�, U, d ⟩ ⊢frmE q

⟨�, U, d ⟩ ⊨ ? ∗ q

AssertAcc
⟨�, d ⟩ ⊢ 4 ⇓ ℓ ⟨ℓ, 5 ⟩ ∈ U

⟨�, U, d ⟩ ⊨ acc(4.5)

AssertPredicate

G = predicate_params(?) ⟨�, d ⟩ ⊢ 4 ⇓ E

⟨�, U, [G ↦→ E] ⟩ ⊨ predicate(?)

⟨�, U, d ⟩ ⊨ ? (4)

AssertConjunction

⟨�, U1, d ⟩ ⊨ q1 ⟨�, U2, d ⟩ ⊨ q2

U1 ∩ U2 = ∅ U1 ∪ U2 ⊆ U

⟨�, U, d ⟩ ⊨ q1 ∗ q2

ExecAssignField
⟨�, d ⟩ ⊢ G ⇓ ℓ ⟨�, d ⟩ ⊢ 4 ⇓ E ⟨�, U, d ⟩ ⊨ acc(G.5) ⟨�, U, d ⟩ ⊢frm 4 � ′

= � [⟨ℓ, 5 ⟩ ↦→ E]

⟨�, ⟨U, d, G .5 = 4; B ⟩ · S⟩, Û → ⟨� ′, ⟨U, d, B ⟩ · S⟩

ExecCallEnter

G = params(<) ⟨�, d ⟩ ⊢ 4 ⇓ E ⟨�, U, d ⟩ ⊢frm 4

d ′ = [G ↦→ E] ⟨�, U \ Û, d ′ ⟩ ⊨ pre(<) U ′
= ⌊pre(<) ⌋ ⟨�,U\Û, d⟩

⟨�, ⟨U, d, ~ =< (4); B ⟩ · S⟩, Û → ⟨�, ⟨U ′, d ′, body(<); skip⟩ · ⟨U \ U ′, d, ~ =< (4); B ⟩ · S⟩

ExecCallExit
⟨�, U ′, d ′ ⟩ ⊨ post(<) d ′′ = d [~ ↦→ d ′ (result)] U ′′

= U ∪ ⌊post(<) ⌋ ⟨�,U ′, d′⟩

⟨�, ⟨U ′, d ′, skip⟩ · ⟨U, d, ~ =< (4); B ⟩ · S⟩, Û → ⟨�, ⟨U, d, B ⟩ · S⟩

Fig. 11. Selected formal rules for dynamic semantics of GVLC0.

false, the invariant is still asserted but execution skips over the statement. These rules are speci�ed
in the supplement [Zimmerman et al. 2024].
Û speci�es the exclusion frame – a set of permissions which may not be passed to the callee

or loop body. It is used only for executing method calls and loops. We later explain why this is
necessary for soundness in §8.
fold and unfold statements are ignored at run-time. Explicit folding and unfolding of predicate

instances is not required because the run-time uses equirecursive semantics for predicates.
The entire set of possible execution steps for a program Π is determined by judgements of the

form Π ⊢ Γ, Û → Γ
′, which denote that execution transitions from Γ to Γ

′, using the exclusion
frame Û . From the init state, execution may only step to the entry statement, and then execution
follows the rules described above.

5 CORRESPONDENCE

Before formalizing soundness, we must specify the correspondence between veri�cation and
dynamic states. We include invariants which depend on concrete values, such as separation, in this
correspondence relation. Finally, we specify the behavior of run-time checks in a dynamic state.

5.1 State Correspondence

A dynamic environment d models a symbolic store W via a valuation + when d
+
W . This denotes

that ∀G ↦→ C ∈ W : G ↦→ + (C) ∈ d .
A heap � and set of permissions U model a precise heap H when ⟨�, U⟩

+
H. This denotes

that for all �eld chunks ⟨5 , C, C ′⟩ ∈ H, � (+ (C), 5) = + (C ′) and ⟨+ (C), 5 ⟩ ∈ U . Also, for all predicate

chunks ⟨?, C⟩, the corresponding predicate body is true using given arguments + (C). Additionally,
the footprint represented by each heap chunk must be disjoint.

The footprint of a heap chunk, given valuation+ and heap � , is denoted+ LℎM� . The footprint of
a �eld chunk ⟨5 , C, C ′⟩ is {⟨+ (C), 5 ⟩}. The footprint of a predicate chunk ⟨?, C⟩ is the exact footprint

of the predicate when applied to the arguments + (C).

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 85. Publication date: January 2024.

Sound Gradual Verification with Symbolic Execution 85:21

+ (C) = true

⟨�, U ⟩ ⊢+ C

⟨+ (C), 5 ⟩ ∈ U

⟨�, U ⟩ ⊢+ ⟨C, 5 ⟩

+ LΘ1M� ∩+ LΘ2M� = ∅

⟨�, U ⟩ ⊢+ sep(Θ1,Θ2)

⟨�, U, [G ↦→ + (C)] ⟩ ⊨ predicate(?)

G = predicate_params(?)

⟨�, U ⟩ ⊢+ ⟨?, C ⟩

Fig. 12. Rules for run-time check assertions

� and U model an optimistic heap H when ⟨�, U⟩
+

H . This has the same requirements as
that for H, except that heap chunks are allowed to overlap.

� , U , and U model a symbolic state when ⟨�, U, d⟩
+

f . This denotes that � and U model both
H(f) andH(f), d models W , and the path condition is true—+ (6(f)) = true.

We also refer to these relations as correspondence—⟨�, U, d⟩
+

f denotes that the symbolic
state f corresponds to � , U , and d .

Finally, a veri�cation state Σ corresponds to a dynamic state Γ with valuation + if Σ = Γ (i.e., Σ

and Γ are the same symbol), or ⟨� (�), U (Γ), d (Γ)⟩
+

f (Σ) and B (Γ) = B (Σ). In other words, the
heap and head stack frame of Γ model the symbolic state of Σ, and the statement in the head stack
frame is syntactically the same statement as that of Σ.

5.2 Run-Time Checks

We also de�ne the semantics of run-time checks using valuations. The judgement ⟨�, U⟩ ⊢+ A

denotes the assertion of a run-time check A , given a valuation + , a heap � , and a set of owned
permissions U . Likewise, ⟨�, U⟩ ⊢+ R denotes the assertion of all run-time checks contained in R.
Formal rules are given in Figure 12.

6 SOUNDNESS

We can now state the soundness of our static veri�er. We slightly modify a traditional progress/p-
reservation statement of soundness in order to accommodate run-time checks.

6.1 Corresponding Valuations

For most symbolic execution judgements, we de�ne a corresponding valuation, inspired by the
valuations used in Khoo et al. [2010]. This de�nes how symbolic values used in the judgement
are mapped to concrete values. To calculate the corresponding valuation we require an initial
valuation, which de�nes the valuation for all symbolic values contained by the input symbolic state,
and a dynamic heap, which de�nes the valuation for optimistically-added �elds. A corresponding
valuation + ′ must extend the initial valuation + , i.e. + ′ (C) = + (C) for all C ∈ dom(+).

We denote the corresponding valuation for a judgement J , initial valuation + , and heap � by
+ [J | �]. The de�nition for each judgement type is de�ned in the supplement [Zimmerman
et al. 2024], along with the proofs for that judgement. Each corresponding valuation is de�ned by
induction on the judgement derivation, specifying the corresponding valuation for each derivation
rule. The judgment is nondeterministic if only the input state is considered, but knowing the output
state resolves this nondeterminism. When the judgement and heap are clear from context, we
simply reference the corresponding valuation extending + .

6.2 Valid States

A valid state is a dynamic state which is completely characterized by veri�cation states. If Γ = init

this is trivially true. For a dynamic state ⟨�, S⟩, we require that the head stack frame corresponds

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 85. Publication date: January 2024.

85:22 C. Zimmerman, J. DiVincenzo, and J. Aldrich

to a reachable veri�cation state. We also require that all other stack frames are partially validated

by some reachable veri�cation state.
If a stack frame is executing a method call, partial validation is characterized by the stack frame

and heap modeling a reachable symbolic state for that program point, with the callee’s precondition
consumed. For the full de�nition refer to Zimmerman et al. [2024].

6.3 Progress and Preservation

Our statement of progress is split into two parts. First, theorem 1 states that if Γ is a valid state and
Γ satis�es the run-time checks calculated by a guard with a path condition that matches the current
dynamic state, then dynamic execution proceeds. Second, theorem 2 states that we can always �nd
the guard necessary to apply theorem 1—a guard whose path condition matches. Thus, theorem 2
represents completeness of symbolic execution with respect to possible dynamic execution paths.
Together these theorems show that, in a valid state, the only possible way for execution to be stuck
is when the run-time checks cannot be asserted.

Theorem 1 (Progress part 1). For some program Π, let Γ be some dynamic state validated by Σ

and + . If Σ ⇀ f ⊣ R, Θ, + ′ is the corresponding valuation extending + , + ′ (6(f)) = true, and
⟨�, U (Γ)⟩ ⊢+ ′ R, then Π ⊢ Γ, + ′LΘM� (Γ) → Γ

′ for some Γ′.

Theorem 2 (Progress part 2). For some program Π, let Γ be some dynamic state validated by
Σ and + . Then Σ ⇀ f ⊣ R, Θ for some f , R, and Θ such that + ′ (6(f)) = true where + ′ is the
corresponding valuation extending + .

Finally, our statement of preservation (theorem 3) assumes the antecedent and conclusion of
theorem 1—the initial state is valid and satis�es the run-time checks of some matching guard—as
well as a dynamic execution step to Γ′. By theorem 2, we know that there is such a guard statement;
i.e., we can always �nd the necessary set of run-time checks. Then preservation states that the
resulting dynamic state Γ′ is also valid.

Theorem 3 (Preservation). For some program Π, let Γ be some dynamic state validated by Σ and+ .
If Σ ⇀ f ⊣ R, Θ,+ ′ is the corresponding valuation extending+ ,+ ′ (6(f)) = true, ⟨�, U (Γ)⟩ ⊢+ ′ R,
and Π ⊢ Γ, + ′LΘM� (Γ) → Γ

′, then Γ
′ is a valid state.

Note that our assumptions for preservation require dynamic execution to not only assert the
run-time checks represented symbolically by R, but also respect the exclusion frame represented
symbolically by Θ. The necessity and implications of this requirement are discussed in §8.

Taken together, these theorems demonstrate that dynamic execution will never be stuck as long
as the run-time checks calculated by static veri�cation succeed. Further, it shows that we calculate
run-time checks for all possible execution paths. Since the dynamic execution semantics ensures all
necessary speci�cations are satis�ed, this implies that the calculated run-time checks are su�cient.

7 CHALLENGES TO FORMALISM OF STATIC VERIFICATION

Our speci�cation of static veri�cation in §2 and §3 is formalised using non-deterministic inference
rules. This di�ers greatly from the speci�cations of Schwerho� [2016] and DiVincenzo et al. [2022],
which both use a CPS-style de�nition for algorithms. The latter form is useful when specifying
an implementation, but makes it di�cult to formulate a syntactic soundness proof. Furthermore,
operational semantics allow a higher level of abstraction than pseudo-code de�nitions. However,
we must carefully consider whether our operational semantics represent the system which is
implemented.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 85. Publication date: January 2024.

Sound Gradual Verification with Symbolic Execution 85:23

7.1 Previous Approaches

During development of our soundness proof, we attempted several formulations of soundness.
Initially we abstractly de�ned a symbolic stack—a list of symbolic states with the form of a dynamic
stack. This approach allowed us to easily state correspondence of the entire dynamic state—each
dynamic stack frame models a corresponding symbolic stack frame.
We found it challenging, however, to prove that this correspondence is maintained. When the

dynamic stack takes a step, we must verify that there is a corresponding symbolic stack. To address
this issue, we de�ned an execution semantics for symbolic stacks. Unfortunately, this increased
the distance between our formalism and implementation, and now we also need to show that
all symbolic states are reachable during static veri�cation. Perhaps due to the complexity of this
approach, the proof of correspondence remained quite di�cult even after de�ning this execution
semantics.
Instead, we de�ned a valid state primarily by the correspondence of the currently executing

dynamic stack frame with some reachable symbolic state—a symbolic state which is computed
during static veri�cation, with no input from dynamic execution. This resulted in a much simpler
de�nition of valid state.
However, in order to completely prove preservation, we also must specify the behavior of

intermediate stack frames – frames contained in the dynamic stack below the currently-executing
frame. Thus we provide a recursive de�nition for a valid partial state. For intermediate frames
containing a method call that is waiting to complete, this requires the frame to model a symbolic
state that results from consuming the callee method’s pre-condition from a reachable veri�cation
state. We use this to prove that the dynamic state after the method returns models the symbolic
state after symbolically executing the method call.

7.2 Verification of Loops

Almost all of our symbolic execution rules are �nitely non-deterministic. That is, given an input
state, there are a �nite number of derivations that can apply. This is necessary since all possible
states must be computed during static veri�cation.

While this property matches the �nite branching of symbolic execution, we make an exception in
the case of loops—speci�cally, the SVerifyLoop rule (Figure 5). It consumes the loop pre-condition,
havocs all variables modi�ed by the loop body (i.e., replaces them with fresh values), and produces
the loop post-condition. Thus it replaces all symbolic values that could be modi�ed by the loop body
with fresh values. The loop is left in place, which means that the rule can be immediately applied
again to derive yet another state. However, this is harmless because repeated applications of this
rule result in isomorphic symbolic states—states which represent the same state but with di�erent
symbolic values. Since the exact symbolic values do not matter, these are equivalent states from the
perspective of static veri�cation. Therefore, even though we allow unbounded non-determinism, an
implementation such as Gradual C0 can compute all possible states (as determined by our formal
model) up to this equivalence. In other words, unbounded non-determinism is an artifact of our
formalization that does not a�ect an implementation.

This exception is motivated by a disconnect between our formal model and the implementation of
Gradual C0 [DiVincenzo et al. 2022]. In our formalism, run-time checks are computed as symbolic
values and lack a representation in terms of the source. Furthermore, we interpret these run-time
checks by means of the valuation function, which we only extend with fresh values as dynamic
execution proceeds. Therefore, the references in a run-time check are �xed – for example, the
validity of a check does not change when the heap is updated, since the heap reference has already
been fully evaluated against the symbolic heap.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 85. Publication date: January 2024.

85:24 C. Zimmerman, J. DiVincenzo, and J. Aldrich

1 Cell create ()

2 requires true ensures ?

3 { result = alloc(Cell); }

4
5 int consume(Cell c)

6 requires acc(c.value) ensures true

7 { · · · }

8 int main() {

9 x = create ();

10 while (true) invariant ? * true {

11 x.value = 1;

12 consume(x);

13 x = create ();

14 }

15 result = 0;

16 }

Fig. 13. Example illustrating the neccessity of the SVerifyLoop rule.

Consider the example in Figure 13. A new object reference ℓ1 is allocated by create at line 9. Then
we consume the loop pre-condition ?∗true, which results in an imprecise state with empty symbolic
heaps. Thus we cannot statically assert access to x.value in the loop body (line 11). However, we
optimistically assume access and produce a run-time check representing acc(x.value). In our
formalism, x is symbolically evaluated to a symbolic value a1 and the corresponding valuation
contains the mapping a1 ↦→ ℓ1. Thus the symbolic run-time check is ⟨a1, value⟩, which succeeds
since the dynamic state owns ⟨ℓ1, value⟩. This permission is then lost when consume is executed
(line 12), but a new reference ℓ2 is allocated at line 13, and the dynamic environment is updated
with x ↦→ ℓ2.

During the next iteration of the loop, if we directly applied the same run-time check, this would
again require the run-time check ⟨a1, value⟩. However, this would fail since the dynamic state no
longer owns ⟨ℓ1, value⟩. But the run-time check should reference ℓ2, since the check is intended to
represent acc(x.value), and x ↦→ ℓ2 in the dynamic state.

This contrasts with the implementation of run-time checks in Gradual C0, which translates the
symbolic checks into source expressions. For the example described, Gradual C0 directly inserts
the assertion acc(x.value). The expression x.value is then re-evaluated every time this assertion
is checked.

SVerifyLoop �xes this mismatch by allowing our formal model to be updated with new symbolic
values. With this rule, we can continue execution using a new symbolic state where we havoc x,
since it is modi�ed by the loop body, and consume the loop invariant ? ∗ true again. Thus we begin
with a symbolic state with empty symbolic heaps and a symbolic store containing x ↦→ a2, where
a2 is a fresh value. We de�ne a new valuation + ′ where new symbolic values are mapped to the
current dynamic state, i.e. + ′ (a2) = ℓ2 since x ↦→ ℓ2 in the dynamic state. The new symbolic state is
isomorphic to the state used during the initial symbolic execution, since it also began execution
of the body with empty symbolic heaps. We will again optimistically evaluate x.value, which
produces a new run-time check for the symbolic permission ⟨a2, value⟩, thus we will check access
to ⟨ℓ2, value⟩, and therefore our run-time checks succeed.

Finally, since this rule introduces more symbolic states in our formal model, this means that our
soundness theorems are stronger than they would be otherwise; i.e., the soundness result holds for
strictly more cases. As our example demonstrates, we want to consider these additional cases since
they are already permitted by Gradual C0 due to its source-level run-time checks. Therefore, this
additional rule allows us to abstract away the re-evaluation of source-level checks, allowing us to
reason with �xed symbolic values.

8 UNSOUNDNESS OF GRADUAL C0

While attempting to prove the soundness of Gradual C0, we discovered that its implementation
[DiVincenzo et al. 2022] allows unsound behavior, and have communicated this to the authors.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 85. Publication date: January 2024.

Sound Gradual Verification with Symbolic Execution 85:25

1 struct Cell { int value; }

2 predicate imprecise () = ? * true

3 void set(Cell c, int v)

4 requires imprecise ()

5 ensures true

6 {

7 unfold imprecise ();

8 c.value = v;

9 }

10 int test()

11 requires true

12 ensures result == 0

13 {

14 fold imprecise ();

15 Cell c = alloc(Cell);

16 c.value = 0;

17 set(c, 1);

18 result = c.value;

19 }

Fig. 14. Example exhibiting unsoundness of DiVincenzo et al. [2022].2

This unsoundness results from the combination of imprecise speci�cations, static veri�cation with
isorecursive predicates, and run-time checking with equirecursive predicates.

8.1 Example

We show an example which exhibits this behavior in Figure 14. At line 14 imprecise() is folded,
thus ? ∗ true is consumed, and the predicate chunk is added to the symbolic heap. At this point
H = {⟨imprecise⟩}. In lines 15-16 a new Cell is allocated and its value is initialized to 0. At this
point H = {⟨imprecise⟩, ⟨value, C1, 0⟩}, where c ↦→ C1.

At line 17, the setmethod is called. Thus the precondition—imprecise()—is consumed, resulting
in H = {⟨value, C1, 0⟩}. The postcondition—true—is then produced, which does not change the
symbolic state. In this symbolic state c.value ↦→ 0. Then line 18 adds the mapping result ↦→ 0

to the symbolic store, which allows the postcondition result == 0 to be consumed successfully.
Now test is valid and no run-time checks are required in its body. Symbolic execution of the set
method shows that this method is also valid but requires a check representing acc(c.value) at
line 16.
Now we consider dynamic execution of the test method. We �rst use no exclusion frame (i.e.

using ∅ for every occurrence of Û in the rules).
The fold at line 14 is ignored, a new Cell is allocated and initialized at lines 15-16, and the

set method is called at line 17. The formula imprecise() is not completely precise, therefore
⌊imprecise()⌋ ⟨�,U, d ⟩ = U . Thus all of the caller’s owned permissions are passed to set. The
assertion for imprecise() succeeds since its equirecursive unrolling is simply ? ∗ true. Likewise,
the assertion for acc(c.value) when executing line 8 also succeeds since the required permissions
were passed from test. After returning from set, c.value ↦→ 1 in the dynamic state, thus
result ↦→ 1 after executing line 18. However, the postcondition result == 0 cannot be asserted,
therefore execution is stuck.
Since DiVincenzo et al. [2022] does not implement an exclusion frame, execution proceeds as

described above, except that only the calculated run-time checks are asserted. Therefore the test
method returns 1, which contradicts its contract. Wise et al. [2020] follows the dynamic execution
behavior described above, but since it checks every assertion at run-time, execution halts and
soundness is preserved.

8.2 Diagnosis

As described above, the caller’s permissions are passed to set, thus the set of permissions owned
by test is empty during execution of set. But we calculated that after consuming pre(set) the
symbolic heap still contains the �eld chunk representing c.value. Therefore heap chunks which

2void methods are used for clarity since they can be trivially translated to the formally de�ned grammar.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 85. Publication date: January 2024.

85:26 C. Zimmerman, J. DiVincenzo, and J. Aldrich

are included in the frame of set during dynamic execution are not removed by consume during
symbolic execution, thus symbolic execution does not accurately represent dynamic execution.

8.3 Possible Solutions

At �rst this appears to be an error of static veri�cation, and thus we could address this by making
static veri�cation more conservative. More speci�cally, we could require a stronger invariant of the
precise heap: themaximal footprint represented by predicate chunks cannot overlap. This contrasts
with our current de�nition, where the exact footprint represented by a predicate chunk must be
disjoint from that of all other predicate chunks.
For example, we could clear the symbolic heaps when consuming any formula that is not

completely precise (i.e., the recursive unfolding contains an imprecise formula). When this occurs,
we would also need to use an imprecise state, so that the existence of the removed permissions
can be optimistically assumed. This would result in empty symbolic heap after line 17 in Figure 14,
and a run-time check for the value of result would be required before returning from test, thus
soundness is preserved.
This would allow maximal footprints of predicate chunks to overlap in the symbolic heap, but

when consuming a predicate instance, all potentially overlapping predicate chunks would be
removed. Thus, after some predicate instance is consumed, its maximal footprint would not overlap
with any permission represented by a heap chunk contained in the symbolic heap.

Alternatively, we could achieve soundness by removing any predicate instance that is not
completely precise when additional permissions are added to the precise heap. Similar to the
previous option, we would also need to use an imprecise state when this occurs. In the example,
that would (perhaps unintuitively) remove the imprecise() predicate when adding permissions for
the alloc statement. This would ensure that the maximal footprint of heap chunks in the symbolic
heap never overlap.
Unfortunately, both of these options reduce the number of assertions that can be statically

discharged when verifying gradual programs, thus more run-time checks would be necessary.
Furthermore, the run-time checks require checking a predicate instance, which can be quite costly
since this traverses the entire unfolding of the predicate.
Furthermore, allowing the predicate instance folded at line 14 to a�ect permissions allocated

afterward, at line 15, seems counter-intuitive. This invalidates the intuitive assumption that the
set of permissions represented by a folded predicate instqance will not change while it remains
folded. Furthermore this behavior breaks the semantics of ?, as speci�ed in Wise et al. [2020], since
no logically consistent strengthening of the imprecise predicate allows it to include permissions
allocated after its body is folded.
This indicates that the semantics of dynamic execution should be modi�ed to exclude access

permission for c.value, which is allocated after imprecise() is folded, from being passed to
set, which is a precise formula that only requires imprecise(). Then execution would fail at
line 8 in Figure 14. To accomplish this, we have introduced the concept of an exclusion frame –
a set of permissions which cannot be passed to a callee. This exclusion frame is calculated by
symbolic execution, and passed to dynamic execution in much the same way as run-time checks.
It is represented by Θ in the guard judgement (§9), which also calculates R, and is translated to
dynamic permissions using a valuation.
The guard rules in Figure 9 calculate the exclusion frame by the rem helper function, after

consuming the pre-condition of a method. If the pre-condition is completely precise, then Θ = ∅,
thus execution of an SVLC0 program is not a�ected. Otherwise, Θ contains all permissions currently
contained in the symbolic heaps. In Figure 14, since the pre-condition of set is not completely
precise, Θ = {⟨C1, value⟩} when calculating the guard statement at line 17. At run-time this is

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 85. Publication date: January 2024.

Sound Gradual Verification with Symbolic Execution 85:27

translated to Û = {⟨ℓ, value⟩} where c ↦→ ℓ . Then all permissions except ⟨ℓ, value⟩ are passed to
set. Thus the run-time check for acc(c.value) at line 8 cannot be asserted.
This addresses the intuitive and semantic problems described above. The isorecursive instance

of imprecise referenced in the pre-condition of set should not represent access to c.value since
it was folded before c was allocated. Under this interpretation we would expect a failure at line
8, since set does not require the necessary permissions. This also matches the semantics of ?, as
de�ned in [Wise et al. 2020], since the predicate instance folded at line 14 cannot consistently imply
access to the heap location allocated at line 15.

8.4 Implementation

There are important implementation challenges that must be addressed before this change can
be implemented in Gradual C0 [DiVincenzo et al. 2022]. Currently, Gradual C0 constructs sets
of permissions at run-time—before calling a method, for example—by recursively unfolding the
neccessary speci�cation and collecting all permissions. However, this method cannot be used to
create the exclusion frame, since these permissions are not necessarily represented by a speci�cation.
But we expect that a translation algorithm can be developed which generates the source code
necessary to compute the exclusion frame at run time. This is similar to the existing translation
algorithm described by DiVincenzo et al. [2022], which translates symbolic run-time checks into
source code that implements the desired assertion.

Also, note that we calculate the exclusion frame using information from symbolic execution of
a particular statement. In other words, if method m calls m′, we can calculate the exclusion frame
necessary for calling m′ without considering the exclusion frame used to call m. This implies that
exclusion frames can be dropped when entering a completely precise method, and then instantiated
again when a precise method calls an imprecise method. This is similar to how Gradual C0 does
not pass permission sets to precise methods, but reconstructs the permissions when a precise
method calls an imprecise methods. Applying this technique to exclusion frames, as described,
would ensure that exclusion frames do not a�ect the run-time performance of methods that are
speci�ed with completely precise speci�cations.

9 FUTURE WORK

There are many possible directions in which this work can be extended. We have not yet proven the
gradual guarantees for gradual veri�cation, as formalized in Wise et al. [2020]. These guarantees
formalize the notion that, given a valid program, gradual speci�cations may be used in place of
all static speci�cations without introducing errors (both during veri�cation and at run time). This
ensures that any errors do not arise from imprecision, but rather from an invalid program or
speci�cation, or (for precise speci�cations) from incompleteness of veri�cation. Our formalization
appears to satisfy this since, as described in §3, we extend the underlying static veri�cation algorithm
mainly by adding optimistic capabilities while leaving the bulk of static veri�cation intact. However,
we have not completed a formal proof.

Our formalization could also be used to extend gradual veri�cation. Notably, gradual veri�-
cation has not been implemented for quanti�ed speci�cations or concurrent programs. Ghost
code/parameters (i.e., code only necessary for supporting logical proofs) is also not supported in
gradual veri�cation, since the “ghost” code could be necessary for run-time checks. Our high-level
de�nition of the gradual veri�er could enable further development to support these techniques.
Likewise, our formalization does not capture several important concepts in Viper such as domains,
fractional permissions, and joining of symbolic execution paths. Formalizing the usage of these
techniques in Viper and proving their soundness would provide further assurance of the correctness
of Viper and provide a starting point for integrating these techniques with gradual veri�cation.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 85. Publication date: January 2024.

85:28 C. Zimmerman, J. DiVincenzo, and J. Aldrich

Our formalization provides a basis for formally proving properties of veri�cation techniques (in
our case, gradual veri�cation) with a model that closely resembles the implementation (in our case,
Gradual C0). Thus modi�cations to our formal model can be more easily implemented and used,
while modi�cations to the implementation can be re�ected in the formal model and proven sound.

10 RELATED WORK

As mentioned previously, implementations of veri�cation using symbolic execution, such as Viper
[Schwerho� 2016], Gradual C0 [DiVincenzo et al. 2022], Smallfoot [Berdine et al. 2005], Chalice
[Leino et al. 2009], and jStar [Distefano and Parkinson 2008], often lack formal soundness proofs. A
notable exception is VeriFast [Jacobs et al. 2011], which implements veri�cation using symbolic
execution. The core of its veri�er was proven sound in Vogels et al. [2015]. This soundness proof
utilizes techniques from abstract interpretation, which may simplify proofs of veri�ers using
symbolic execution. However, VeriFast uses separation logic instead of IDF.
Several previous veri�ers using WLP or veri�cation condition generation (VCG) have been

directly proven sound [Herms et al. 2012; Smans et al. 2012; Vogels et al. 2009, 2010]. Several similar
veri�ers produce a proof during veri�cation which may be checked to the validate soundness of an
individual veri�cation result [Filliâtre and Paskevich 2013; Parthasarathy et al. 2021].
Viper [Müller et al. 2016] and Gradual C0 [DiVincenzo et al. 2022] rely on an SMT solver to

implement their veri�cation algorithms. While we have proved soundness of our formal model, this
soundness is contingent on the soundness of the SMT solver. Other work has extended soundness
to include soundness of the entire veri�cation system. Notably, VeriSmall [Keuchel et al. 2022],
Diaframe [Mulder et al. 2022], and Re�nedC [Sammler et al. 2021] are all encoded in Iris/Coq,
making them either foundational or self-verifying.
As described before, soundness of gradual veri�cation based on WLP has been proven in both

Wise et al. [2020] and Bader et al. [2018]. However, Wise et al. [2020] depends on dynamically
checking all assertions, while Bader et al. [2018] does not handle abstract heap predicates.

11 CONCLUSION

The recent implementation of gradual veri�cation in DiVincenzo et al. [2022] promises a dramatic
reduction in the e�ort required to verify programs. However, this requires con�dence in the cor-
rectness of their gradual veri�cation system, Gradual C0, as well as its underlying static veri�cation
system, Viper. In this work, we formalized symbolic execution in (a subset of) Viper and proved it
sound, in addition to formalizing gradual veri�cation in Gradual C0 and proving it sound. During
this work we found a soundness bug in Gradual C0, which we communicated to DiVincenzo et al.
[2022] along with possible solutions. This illustrates that, while correctness in gradual veri�ers
can be guaranteed, it should not be assumed without rigorous proof. There are a few interesting
directions we could take this work: (1) proving that Gradual C0 adheres to the gradual guarantee as
formalized by Wise et al. [2020], which is a very important property of gradual veri�ers that should
be straightforward to prove with our formal system, and (2) using our formalism to explore new
directions in gradual veri�cation like quanti�cation or concurrency, and prove systems utilizing
them sound. In general, we hope that this work serves as a strong basis for future proof work in
static and gradual veri�cation when using symbolic execution.

ACKNOWLEDGMENTS

We thank Jana Dun�eld for her helpful feedback.
This work was supported by the National Science Foundation under Grant No. CCF-1901033

(https://www.nsf.gov/awardsearch/showAward?AWD_ID=1901033) and a Google PhD Fellowship.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 85. Publication date: January 2024.

https://www.nsf.gov/awardsearch/showAward?AWD_ID=1901033

Sound Gradual Verification with Symbolic Execution 85:29

REFERENCES

Rob Arnold. 2010. C0, an Imperative Programming Language for Novice Computer Scientists. Master’s thesis. Department of
Computer Science, Carnegie Mellon University. http://reports-archive.adm.cs.cmu.edu/anon/anon/usr/ftp/home/ftp/
2010/CMU-CS-10-145.pdf

Vytautas Astrauskas, Aurel Bílý, Jonás Fiala, Zachary Grannan, Christoph Matheja, Peter Müller, Federico Poli, and
Alexander J. Summers. 2022. The Prusti Project: Formal Veri�cation for Rust. In NASA Formal Methods - 14th International

Symposium, NFM 2022, Pasadena, CA, USA, May 24-27, 2022, Proceedings (Lecture Notes in Computer Science, Vol. 13260),
Jyotirmoy V. Deshmukh, Klaus Havelund, and Ivan Perez (Eds.). Springer, 88–108. https://doi.org/10.1007/978-3-031-
06773-0_5

Johannes Bader, Jonathan Aldrich, and Éric Tanter. 2018. Gradual Program Veri�cation. In Veri�cation, Model Checking, and

Abstract Interpretation - 19th International Conference, VMCAI 2018, Los Angeles, CA, USA, January 7-9, 2018, Proceedings

(Lecture Notes in Computer Science, Vol. 10747), Isil Dillig and Jens Palsberg (Eds.). Springer, 25–46. https://doi.org/10.
1007/978-3-319-73721-8_2

Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. 2005. Smallfoot: Modular Automatic Assertion Checking with
Separation Logic. In Formal Methods for Components and Objects, 4th International Symposium, FMCO 2005, Amsterdam, The

Netherlands, November 1-4, 2005, Revised Lectures (Lecture Notes in Computer Science, Vol. 4111), Frank S. de Boer,MarcelloM.
Bonsangue, Susanne Graf, and Willem P. de Roever (Eds.). Springer, 115–137. https://doi.org/10.1007/11804192_6

Stefan Blom, Saeed Darabi, Marieke Huisman, and Wytse Oortwijn. 2017. The VerCors Tool Set: Veri�cation of Parallel
and Concurrent Software. In Integrated Formal Methods - 13th International Conference, IFM 2017, Turin, Italy, September

20-22, 2017, Proceedings (Lecture Notes in Computer Science, Vol. 10510), Nadia Polikarpova and Steve A. Schneider (Eds.).
Springer, 102–110. https://doi.org/10.1007/978-3-319-66845-1_7

Dino Distefano and Matthew J. Parkinson. 2008. JStar: Towards Practical Veri�cation for Java. SIGPLAN Not. 43, 10 (oct
2008), 213–226. https://doi.org/10.1145/1449955.1449782

Jenna DiVincenzo, Ian McCormack, Hemant Gouni, Jacob Gorenburg, Mona Zhang, Conrad Zimmerman, Joshua Sun-
shine, Éric Tanter, and Jonathan Aldrich. 2022. Gradual C0: Symbolic Execution for E�cient Gradual Veri�cation.
arXiv:2210.02428 [cs.LO]

Marco Eilers and Peter Müller. 2018. Nagini: A Static Veri�er for Python. In Computer Aided Veri�cation - 30th International

Conference, CAV 2018, Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings,

Part I (Lecture Notes in Computer Science, Vol. 10981), Hana Chockler and Georg Weissenbacher (Eds.). Springer, 596–603.
https://doi.org/10.1007/978-3-319-96145-3_33

Jean-Christophe Filliâtre and Andrei Paskevich. 2013. Why3 - Where Programs Meet Provers. In Programming Languages

and Systems - 22nd European Symposium on Programming, ESOP 2013, Held as Part of the European Joint Conferences on

Theory and Practice of Software, ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceedings (Lecture Notes in Computer Science,

Vol. 7792), Matthias Felleisen and Philippa Gardner (Eds.). Springer, 125–128. https://doi.org/10.1007/978-3-642-37036-6_8
Ronald Garcia, Alison M. Clark, and Éric Tanter. 2016. Abstracting Gradual Typing. (2016), 429–442. https://doi.org/10.

1145/2837614.2837670
Paolo Herms, Claude Marché, and Benjamin Monate. 2012. A Certi�ed Multi-prover Veri�cation Condition Generator. In

Veri�ed Software: Theories, Tools, Experiments - 4th International Conference, VSTTE 2012, Philadelphia, PA, USA, January

28-29, 2012. Proceedings (Lecture Notes in Computer Science, Vol. 7152), Rajeev Joshi, Peter Müller, and Andreas Podelski
(Eds.). Springer, 2–17. https://doi.org/10.1007/978-3-642-27705-4_2

C. A. R. Hoare. 1969. An Axiomatic Basis for Computer Programming. Commun. ACM 12, 10 (oct 1969), 576–580.
https://doi.org/10.1145/363235.363259

Bart Jacobs, Jan Smans, Pieter Philippaerts, Frédéric Vogels, Willem Penninckx, and Frank Piessens. 2011. VeriFast: A
Powerful, Sound, Predictable, Fast Veri�er for C and Java. In NASA Formal Methods - Third International Symposium, NFM

2011, Pasadena, CA, USA, April 18-20, 2011. Proceedings (Lecture Notes in Computer Science, Vol. 6617), Mihaela Gheorghiu
Bobaru, Klaus Havelund, Gerard J. Holzmann, and Rajeev Joshi (Eds.). Springer, 41–55. https://doi.org/10.1007/978-3-
642-20398-5_4

Steven Keuchel, Sander Huyghebaert, Georgy Lukyanov, and Dominique Devriese. 2022. Veri�ed Symbolic Execution with
Kripke Speci�cation Monads (and No Meta-Programming). Proc. ACM Program. Lang. 6, ICFP, Article 97 (aug 2022),
31 pages. https://doi.org/10.1145/3547628

Yit Phang Khoo, Bor-Yuh Evan Chang, and Je�rey S. Foster. 2010. Mixing Type Checking and Symbolic Execution. In
Proceedings of the 31st ACM SIGPLAN Conference on Programming Language Design and Implementation (Toronto, Ontario,
Canada) (PLDI ’10). Association for Computing Machinery, New York, NY, USA, 436–447. https://doi.org/10.1145/
1806596.1806645

K. Rustan M. Leino, Peter Müller, and Jan Smans. 2009. Veri�cation of Concurrent Programs with Chalice. In Foundations of

Security Analysis and Design V, FOSAD 2007/2008/2009 Tutorial Lectures (Lecture Notes in Computer Science, Vol. 5705),
Alessandro Aldini, Gilles Barthe, and Roberto Gorrieri (Eds.). Springer, 195–222. https://doi.org/10.1007/978-3-642-

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 85. Publication date: January 2024.

http://reports-archive.adm.cs.cmu.edu/anon/anon/usr/ftp/home/ftp/2010/CMU-CS-10-145.pdf
http://reports-archive.adm.cs.cmu.edu/anon/anon/usr/ftp/home/ftp/2010/CMU-CS-10-145.pdf
https://doi.org/10.1007/978-3-031-06773-0_5
https://doi.org/10.1007/978-3-031-06773-0_5
https://doi.org/10.1007/978-3-319-73721-8_2
https://doi.org/10.1007/978-3-319-73721-8_2
https://doi.org/10.1007/11804192_6
https://doi.org/10.1007/978-3-319-66845-1_7
https://doi.org/10.1145/1449955.1449782
https://arxiv.org/abs/2210.02428
https://doi.org/10.1007/978-3-319-96145-3_33
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.1145/2837614.2837670
https://doi.org/10.1145/2837614.2837670
https://doi.org/10.1007/978-3-642-27705-4_2
https://doi.org/10.1145/363235.363259
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1145/3547628
https://doi.org/10.1145/1806596.1806645
https://doi.org/10.1145/1806596.1806645
https://doi.org/10.1007/978-3-642-03829-7_7
https://doi.org/10.1007/978-3-642-03829-7_7

85:30 C. Zimmerman, J. DiVincenzo, and J. Aldrich

03829-7_7
Ike Mulder, Robbert Krebbers, and Herman Geuvers. 2022. Diaframe: Automated Veri�cation of Fine-Grained Concurrent

Programs in Iris. In Proceedings of the 43rd ACM SIGPLAN International Conference on Programming Language Design and

Implementation (San Diego, CA, USA) (PLDI 2022). Association for Computing Machinery, New York, NY, USA, 809–824.
https://doi.org/10.1145/3519939.3523432

Peter Müller, Malte Schwerho�, and Alexander J. Summers. 2016. Viper: A Veri�cation Infrastructure for Permission-Based
Reasoning. In Veri�cation, Model Checking, and Abstract Interpretation - 17th International Conference, VMCAI 2016, St.

Petersburg, FL, USA, January 17-19, 2016. Proceedings (Lecture Notes in Computer Science, Vol. 9583), Barbara Jobstmann
and K. Rustan M. Leino (Eds.). Springer, 41–62. https://doi.org/10.1007/978-3-662-49122-5_2

Matthew Parkinson and Gavin Bierman. 2005. Separation Logic and Abstraction. SIGPLAN Not. 40, 1, 247–258. https:
//doi.org/10.1145/1047659.1040326

Gaurav Parthasarathy, Peter Müller, and Alexander J. Summers. 2021. Formally Validating a Practical Veri�cation Condition
Generator. In Computer Aided Veri�cation - 33rd International Conference, CAV 2021, Virtual Event, July 20-23, 2021,

Proceedings, Part II (Lecture Notes in Computer Science, Vol. 12760), Alexandra Silva and K. Rustan M. Leino (Eds.). Springer,
704–727. https://doi.org/10.1007/978-3-030-81688-9_33

John C. Reynolds. 2002. Separation Logic: A Logic for Shared Mutable Data Structures. In 17th IEEE Symposium on Logic

in Computer Science (LICS 2002), 22-25 July 2002, Copenhagen, Denmark, Proceedings. IEEE Computer Society, 55–74.
https://doi.org/10.1109/LICS.2002.1029817

Michael Sammler, Rodolphe Lepigre, Robbert Krebbers, Kayvan Memarian, Derek Dreyer, and Deepak Garg. 2021. Re�nedC:
Automating the Foundational Veri�cation of C Code with Re�ned Ownership Types. In Proceedings of the 42nd ACM

SIGPLAN International Conference on Programming Language Design and Implementation (Virtual, Canada) (PLDI 2021).
Association for Computing Machinery, New York, NY, USA, 158–174. https://doi.org/10.1145/3453483.3454036

Malte Schwerho�. 2016. Advancing Automated, Permission-Based Program Veri�cation Using Symbolic Execution. Ph. D.
Dissertation. ETH Zurich, Zürich, Switzerland. https://doi.org/10.3929/ETHZ-A-010835519

Jan Smans, Bart Jacobs, and Frank Piessens. 2012. Implicit Dynamic Frames. ACM Trans. Program. Lang. Syst. 34, 1, Article 2
(may 2012), 58 pages. https://doi.org/10.1145/2160910.2160911

Alexander J. Summers and Sophia Drossopoulou. 2013. A Formal Semantics for Isorecursive and Equirecursive State
Abstractions. In ECOOP 2013 - Object-Oriented Programming - 27th European Conference, Montpellier, France, July 1-5,

2013. Proceedings (Lecture Notes in Computer Science, Vol. 7920), Giuseppe Castagna (Ed.). Springer, 129–153. https:
//doi.org/10.1007/978-3-642-39038-8_6

Frédéric Vogels, Bart Jacobs, and Frank Piessens. 2009. A Machine Checked Soundness Proof for an Intermediate Veri�cation
Language. In SOFSEM 2009: Theory and Practice of Computer Science, 35th Conference on Current Trends in Theory and

Practice of Computer Science, Spindleruv Mlýn, Czech Republic, January 24-30, 2009. Proceedings (Lecture Notes in Computer

Science, Vol. 5404), Mogens Nielsen, Antonín Kucera, Peter Bro Miltersen, Catuscia Palamidessi, Petr Tuma, and Frank D.
Valencia (Eds.). Springer, 570–581. https://doi.org/10.1007/978-3-540-95891-8_51

Frédéric Vogels, Bart Jacobs, and Frank Piessens. 2010. A Machine-Checked Soundness Proof for an E�cient Veri�cation
Condition Generator. In Proceedings of the 2010 ACM Symposium on Applied Computing (Sierre, Switzerland) (SAC ’10).
Association for Computing Machinery, New York, NY, USA, 2517–2522. https://doi.org/10.1145/1774088.1774610

Frédéric Vogels, Bart Jacobs, and Frank Piessens. 2015. Featherweight VeriFast. Log. Methods Comput. Sci. 11, 3 (2015).
https://doi.org/10.2168/LMCS-11(3:19)2015

Jenna Wise, Johannes Bader, Cameron Wong, Jonathan Aldrich, Éric Tanter, and Joshua Sunshine. 2020. Gradual Veri�cation
of Recursive Heap Data Structures. Proc. ACM Program. Lang. 4, OOPSLA, Article 228 (nov 2020), 28 pages. https:
//doi.org/10.1145/3428296

Conrad Zimmerman, Jenna DiVincenzo, and Jonathan Aldrich. 2024. Sound Gradual Veri�cation with Symbolic Execution.
(2024). arXiv:2311.07559 [cs.PL]

Received 2023-07-11; accepted 2023-11-07

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 85. Publication date: January 2024.

https://doi.org/10.1007/978-3-642-03829-7_7
https://doi.org/10.1007/978-3-642-03829-7_7
https://doi.org/10.1145/3519939.3523432
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1145/1047659.1040326
https://doi.org/10.1145/1047659.1040326
https://doi.org/10.1007/978-3-030-81688-9_33
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1145/3453483.3454036
https://doi.org/10.3929/ETHZ-A-010835519
https://doi.org/10.1145/2160910.2160911
https://doi.org/10.1007/978-3-642-39038-8_6
https://doi.org/10.1007/978-3-642-39038-8_6
https://doi.org/10.1007/978-3-540-95891-8_51
https://doi.org/10.1145/1774088.1774610
https://doi.org/10.2168/LMCS-11(3:19)2015
https://doi.org/10.1145/3428296
https://doi.org/10.1145/3428296
https://arxiv.org/abs/2311.07559

	Abstract
	1 Introduction
	2 SVL_C0
	2.1 Definition
	2.2 Representation
	2.3 Evaluating Expressions
	2.4 Consuming Formulas
	2.5 Producing Formulas
	2.6 Executing Statements
	2.7 Modularly Verifying Programs
	2.8 Example

	3 GVL_C0
	3.1 Gradual Formulas
	3.2 Representation
	3.3 Run-Time Checks
	3.4 Evaluating Expressions
	3.5 Consuming Formulas
	3.6 Producing Formulas
	3.7 Executing Statements
	3.8 Guarding Execution
	3.9 Example

	4 Executing GVL_C0
	4.1 Representation
	4.2 Evaluating Expressions
	4.3 Asserting Formulas
	4.4 Footprints
	4.5 Executing Statements

	5 Correspondence
	5.1 State Correspondence
	5.2 Run-Time Checks

	6 Soundness
	6.1 Corresponding Valuations
	6.2 Valid States
	6.3 Progress and Preservation

	7 Challenges to Formalism of Static Verification
	7.1 Previous Approaches
	7.2 Verification of Loops

	8 Unsoundness of Gradual C0
	8.1 Example
	8.2 Diagnosis
	8.3 Possible Solutions
	8.4 Implementation

	9 Future Work
	10 Related Work
	11 Conclusion
	Acknowledgments
	References

