
ar
X

iv
:2

41
1.

02
31

8v
3 

 [
cs

.S
E

] 
 3

 J
an

 2
02

5

Evaluating the Ability of GPT-4o to Generate

Verifiable Specifications in VeriFast

Wen Fan

Purdue University

West Lafayette, IN, USA

fan372@purdue.edu

Marilyn Rego

Purdue University

West Lafayette, IN, USA

mrego@purdue.edu

Xin Hu

University of Michigan - Ann Arbor

Ann Arbor, MI, USA

hsinhu@umich.edu

Sanya Dod

Purdue University

West Lafayette, IN, USA

sdod@purdue.edu

Zhaorui Ni

Purdue University

West Lafayette, IN, USA

ni134@purdue.edu

Danning Xie

Purdue University

West Lafayette, IN, USA

xie342@purdue.edu

Jenna DiVincenzo

Purdue University

West Lafayette, IN, USA

jennad@purdue.edu

Lin Tan

Purdue University

West Lafayette, IN, USA

lintan@purdue.edu

Abstract—Static verification is a powerful method for enhanc-
ing software quality, but it demands significant human labor and
resources. This is particularly true of static verifiers that reason
about heap manipulating programs using an ownership logic.
LLMs have shown promise in a number of software engineering
activities, including code generation, test generation, proof gener-
ation for theorem provers, and specification generation for static
verifiers. However, prior work has not explored how well LLMs
can perform specification generation for specifications based in an
ownership logic, such as separation logic. To address this gap,
this paper explores OpenAI’s GPT-4o model’s effectiveness in
generating specifications on C programs that are verifiable with
VeriFast, a separation logic based static verifier. Our experiment
employs three different types of user inputs as well as basic and
Chain-of-Thought (CoT) prompting to assess GPT’s capabilities.
Our results indicate that the specifications generated by GPT-4o
preserve functional behavior, but struggle to be verifiable. When
the specifications are verifiable they contain redundancies. Future
directions are discussed to improve the performance.

Index Terms—formal verification, large language models,
prompt engineering, separation logic

I. INTRODUCTION

Auto-active (Hoare-logic styled [1], static) verifiers, such as

Viper [2], Verus [3], Dafny [4], Gillian [5], and VeriFast [6],

are powerful as they can prove the absence of large classes of

bugs in code. Ideally, users of such tools need only specify

the intended behavior of their code on the code itself (as pre-

and postconditions), and the tool will automatically provide

feedback on whether or not the code is provably correct with

respect to this behavior. In reality, auto-active verifiers require

many more auxiliary specifications (e.g. loop invariants, lem-

mas, opens, closes) to achieve this goal, burdening users.

In recent years, large language models (LLMs) have been

effective in generating code [7], [8], test-cases [9]–[14], and

proofs in proof assistants [15]–[19]. LLMs have also been

shown to be effective at generating specifications supported

by auto-active verifiers [20]–[25]. However, related work has

not explored whether or not off-the-shelf LLMs can generate

specifications based on a permissions logic, like separation

logic [26], that can be verified by auto-active verifiers such

as VeriFast, Gillian, and Viper. Thanks to such specifications,

these verifiers do well at verifying programs that manipulate

the heap for both memory safety and functional properties.

But, permissions logic based specifications are particularly

cumbersome to write, because they must specify the shape

of the heap alongside functional constraints. This leads to

specifications containing a number of predicates that hide heap

details; and as a result, numerous lemmas, folds, unfolds, and

special loop invariants that are used to connect the content

of these predicates. While such specifications are difficult to

reason about, they are written in a patterned way that may be

amenable to generation via LLMs.

Therefore, this paper evaluates how effective OpenAI’s

GPT-4o model [27] is at generating specifications that can be

verified by VeriFast [6], which supports separation logic-based

verification of C and Java code. We selected OpenAI’s GPT-4o

model due to its strong text comprehension and generation ca-

pabilities [28]. We ask three main research questions regarding

whether or not the LLM’s output specifications and code pre-

serve functional behavior, are verified, and are conventional.

To answer these questions, we developed 21 input-output pairs

from 150 publicly available VeriFast programs as test cases

and ground truth, and employed two prompt engineering meth-

ods (Basic Prompting and CoT Prompting) to instruct GPT-

4o. Then, we manually inspected the outputs generated by the

LLM by comparing them with the ground truth in a qualitative

analysis. Results show that GPT-4o generates specifications

and code that preserves functional behavior expressed in input

files. We also found that both prompting methods result in

tons of verification errors, and the small number of LLM

output files that do verify contain redundant specifications.

This shows a need for better prompting techniques, which we

intend to explore in follow-up work.

II. RELATED WORK

A. Specification Generation for Auto-active Verifiers

Houdini [29] is an annotation assistant that suggests can-

didate annotations using heuristics, which are then verified

http://arxiv.org/abs/2411.02318v3


or refuted by ESC/Java [30]. Vogels et al. [31] showed on

eight small programs that given preconditions shape analysis

can deduce all specifications required to verify programs with

VeriFast. Yao et al. [32] combine GPT-4 and static analysis

to automate proof synthesis in Verus [3]. Kamath et al. [21]

use LLMs to generate inductive loop invariants and then

verify the candidates with Frama-C [33]. Misu et al. [22]

investigated how well GPT-4 and PaLM-2 can synthesize

verified methods in Dafny with various prompting approaches,

and found few-shot reasoning is the best. Laurel [34] uses large

language models with prompting techniques to generate helper

assertions for Dafny programs. Finally, Mukherjee et al. [25],

which is most closely related, present a synthesis framework

for C code that uses LLMs to generate programs verified by

VeriFast. Our work focuses on verifying existing C code with

VeriFast rather than generating whole programs. Further, our

work considers loops and helper functions; theirs does not.

B. Program Invariant Generation with LLMs or ML

Daikon [35] automatically infers likely invariants from pro-

gram executions using machine learning for use in testing, de-

bugging, and verification tasks. Pei et al. [36] used fine-tuned

large language models to predict program invariants on par

with Daikon. Xie et al. [37] evaluated the capabilities of LLMs

to generate specifications from comments and documentation,

demonstrating few-shot learning and advanced prompt strate-

gies outperform traditional methods by 5.1–10.0%. Only Nim-

mer et. al [38] tried to integrate generated program invariants

with an auto-active verifier pairing Daikon with ESC/Java to

achieve over 90% precision and recall. Daikon does not rely

on LLMs to generate specifications and ESC/Java does not

support separation logic, so our work is novel in comparison.

C. Proof Synthesis for Proof Assistants with LLMs or ML

Lots of work utilize LLMs or neural networks to generate

tactics (next proof steps) or whole proofs in proof assistants

(interactive theorem provers) such as Coq [39], Isabelle/HOL

[40], and Lean [41]. For Coq, Sanchez-Stern et al. [42]

improved on existing neural network based proof synthesis

tools ASTactic [43] and TacTok [44] by modeling identifiers.

Lu et. al [45] combined LLMs with symbolic methods to

synthesize whole proofs. For Isabelle/HOL, Jiang et. al. [17]

use a fine-tuned language model to synthesize proof steps

until a proof is achieved. Thor [46] uses hammers for premise

selection and designates the rest of proof synthesis to language

models. Similarly, Jiang et al. [47] leverage informal and

formal proof sketches that are filled in by LLMs. Finally,

First et. al [19] fine-tune LLMs for whole-proof generation

and repair. For Lean, Han et al. [48] use LLMs to suggest

proof tactics. In contrast, our work focuses on the capabilities

of LLMs to generate specifications for auto-active verifiers.

III. VERIFAST & BENCHMARKS

A. VeriFast

VeriFast [6] is a sound and modular, auto-active verifier

that reasons with symbolic execution [49] to efficiently verify

single and multi-threaded C and Java programs against spec-

ifications in separation logic [26]. As a result, VeriFast can

verify functional properties and memory safety (e.g., dangling

pointer dereference and double free). We chose VeriFast due

to its maturity: e.g. verifying four industrial case studies for

memory safety [50]. Furthermore, over 150 open-source C

programs have been specified and verified with VeriFast.

B. VeriFast Benchmarks used in the Evaluation

We selected a subset of 21 fully specified C files available

publicly in VeriFast’s Github repository to use in our evalua-

tion. These benchmarks cover diverse programming concepts

and verification properties. For example, filter stack.c and

values.c involve on-heap data structures like stacks and linked

lists, while others have file I/O (e.g., cp.c), fractional permis-

sion (e.g., fractions-counting.c) and recursion (e.g., wc.c). We

extracted the types of specification constructs used in each file

(e.g. separation logic arrow and predicate instance) and where

they are specified (e.g., in precondition or postcondition).

Table I presents the aggregated results of files from this

analysis. Of the 398 specification elements observed, predicate

calls (44.2%), boolean expressions (32.7%) and separation

logic arrows (10.3%) are prevalent. Moreover, the heap-related

specifications (e.g., separation logic arrow and fractional per-

mission) occurred the most in preconditons, postconditions

and predicate declarations. We also find that the number of

specifications varied a lot (e.g. filter stack.c has 49 lines while

typedef.c has 2 lines).

C. Input-Output Pairs

We developed input-output pairs from the benchmarks de-

scribed in §III-B. The inputs are GPT-4o’s starting point and

the outputs are GPT-4o’s goal. Thus, the output files are

defined as the fully verified benchmarks. We experiment with

three types of inputs per distinct output file that represent

possible user inputs: Natural Language (NL), Functional Be-

havior (FB), and Functional Behavior Plus (FB+). Each of the

input types contain code from the output file but with different

partial specifications. An NL input does not contain any formal

specifications, but only a natural language description of the

intended behavior of each function. A FB input contains

formal specifications that specify only the functional behavior

of each function (e.g., pre- and postconditions). Finally, a

FB+ input contains only formally specified preconditions and

postconditions directly from the output file, which specify

functional behavior but may also contain other properties.

Examples of each input type and the corresponding output

for them is shown in Listing 1.

// The increment function increments the

// value of the Counter structure by one ...

void increment(struct Counter* c) // NL input

{ int tmp = c->value; c->value = tmp + 1; }

void increment(struct Counter* c) // FB input

//@ requires Counter(c, ?v);

//@ ensures Counter(c, v+1);

{ int tmp = c->value; c->value = tmp + 1; }

https://github.com/verifast/verifast/tree/c7a1817a550005d3ae830d15df06ccaaf840da49/examples


Specification Pre. Post. Open Close Pred. Declar. Lemma Declar.

Aggregated Result 8/3/59/35/6/3 9/2/47/35/5/5 0/6/0/33/0/0 0/3/0/38/0/0 24/5/15/5/2/10 0/0/9/0/1/0

TABLE I: Aggregated results of specification constructs. Element counts are formatted as “Separation Logic Arrow/Fractional Permissions/Boolean
Expression/Predicate Call/Empty Heap/Malloc Block.”

void increment(struct Counter* c) // FB+ input

//@ requires Counter(c, ?v) &*& v < INT_MAX;

//@ ensures Counter(c, v+1);

{ int tmp = c->value; c->value = tmp + 1; }

void increment(struct Counter* c) // output

//@ requires Counter(c, ?v) &*& v < INT_MAX;

//@ ensures Counter(c, v+1);

{ //@ open Counter(c, v);

int tmp = c->value;

c->value = tmp + 1;

//@ close Counter(c, v+1); }

Listing 1: Input-output pairs created for the increment function

IV. PROMPT ENGINEERING

We explore two different prompting approaches in our

study: Basic and Chain of Thought (CoT) prompting.

Basic Prompting: The basic prompting approach instructs

GPT-4o to generate verifiable specifications with VeriFast for

an input with a single, few sentence prompt. This prompt

provides minimal context and instructions and is available (link

available post review). Basic prompting establishes a baseline

to evaluate CoT and future prompting approaches against.

CoT Prompting: The CoT prompting approach [51]

guides an LLM through structured, step-by-step instructions

for generating VeriFast specifications. Our version of CoT

mirrors the logical progression followed by experts in spec-

ification writing. For example, when writing a precondition,

the prompt first explains how to capture the input behavior of

a function, then details constraints on syntax and positional

requirements, and finally addresses additional properties such

as memory safety. The CoT prompt, with code, is available

(Link included post review). Unlike few-shot prompting used

by Misu et al. [22], our CoT prompting deconstructs the

specification writing process into actionable steps.

V. QUALITATIVE ANALYSIS

We prompt GPT-4o for output files using scripts imple-

menting the prompting approaches (§IV) and our input files

(§III-C). We assess the GPT-4o outputs using a qualitative

analysis designed to answer the following research questions:

• RQ1: How well does GPT-4o preserve functional behav-

ior?

• RQ2: How well does GPT-4o generate verifiable speci-

fications?

• RQ3: How conventional are the verifiable specifications

generated by GPT-4o?

For each RQ, we developed an initial set of qualitative codes

from our intuition, comparisons with the ground truth, and a

pilot study on a subset of the output files. As we performed

our qualitative analysis by applying the codes to parts of the

output files as necessary, we refined our codes as well.

For RQ1, we assessed how well GPT-4o preserves func-

tional behavior expressed in function contracts (precondition/-

postconditions) and in source code. We assigned codes/sub-

codes categorized as preserved when the output is equivalent

to the input, strengthened when the output implies the input,

weakened when the output is implied by the input, and others

(e.g. when the output is unrelated to the input).

For RQ2, we ran VeriFast on all outputs from GPT-4o

to check their verifiability. If a file was verified, then we

analyzed its specifications for how conventional they are

(RQ3). Otherwise, we assigned codes representing the cause

of verification failure(s). To capture all the underlying verifia-

bility issues in the output, we iteratively fixed failures until the

output verifies. The codes fall into two categories: compilation

error or verification error. Compilation error codes include

specification out-of-position (spec-OOP), syntax errors (errors

during the parsing stage) and include & type check errors

(errors during the include or type checking stage). Verification

errors are assigned based on the the component of the corre-

sponding fix and include incorrect precondition/postcondition,

predicate definition, open/close/assert/leak use or definition,

lemma definition, lemma use, and loop invariant and other

errors (e.g., source code being modified incorrectly).

For RQ3, we analyze the conventionality of correctly

generated specifications. Our codes for this research ques-

tion capture redundant specifications that are unnecessary for

verification and ambiguous specifications that exhibit naming

mismatches with the intended function. The assigned codes are

aggregated by occurrence; and, the results given next (§VI).

VI. RESULT & DISCUSSION

A. RQ1 - Functional Behavior Analysis

Table II summarizes functional behavior in output files,

where most of them preserve the functional behavior. Specif-

ically, in the 126 output files analyzed (21 benchmarks ×

3 input types × 2 prompting), only 20 show changes in

preconditions/postconditions and 3 show changes in source

code. For the 7 files with strengthened functional behavior,

6 had extra constraints in postcondition (e.g., “new_count

<= count”). For 10 files with weakened functional behavior,

9 missed properties in the postconditions or predicates (e.g.,

not specifying the value of balance in “acc->balance |->

?b”). The modified functional behavior in the source code was

due to LLM altering the source code (e.g., changing the argu-

ment from -100 to 100). Thus, to answer RQ1, we show GPT-

4o largely preserves functional behavior in specifications and

source code across all input types and prompting techniques.



Functional Behavior Pre/Postcondition Source Code

preserved 106 123

strengthened 7 0

weakened 10 1

others 3 2

Total 126 126

TABLE II: Functional Behavior Preservation Analysis

B. RQ2 - VeriFast Specifications Analysis

Table III shows the aggregated number of different errors

in GPT-4o’s outputs across the 21 benchmarks with different

prompting methods and input types. Only 9 out of the 126

output files were directly verifiable, while the remaining files

showcased a high number of errors, with 539 errors from basic

prompting and 555 from the CoT prompting approach.

1) Impact of Input Type: The NL inputs resulted in more

compilation errors (103 and 123) than other inputs (at most

28). Similarly, considering the errors of pre/postcondition and

predicate, FB+ inputs resulted in fewer such errors (at most 6

+ 2 = 8 in CoT prompt of FB+), compared to other types (at

least 15 + 9 = 24). This difference can be attributed to more

detailed and precise specifications provided in FB+ inputs.

Thus, providing GPT-4o with examples or input containing

detailed preconditions and postconditions in VeriFast syntax

can improve the correctness of its output. However, even

if correct preconditions/postconditions are provided, GPT-4o

occasionally modifies them, introducing errors (e.g., removing

bound checks in a precondition). Additionally, the three input

types produced a similar number of errors for lemmas and

loop invariants. For lemmas, this may be because they often

require extra information beyond the capabilities of the GPT-

4o. For instance, 114 errors were about implicit bound checks

for data types like size_t, and 27 errors were linked to

meeting the preconditions of standard library functions such

as fread. For loop invariants, the difficulty likely arises from

the complexity of ensuring their correctness, as they must hold

true both at the start of the loop and after each iteration.

2) Impact of Prompting Method: The basic prompting and

CoT prompting resulted in similar performance. On NL, FB,

and FB+ inputs, the CoT prompt did not reduce the number

of compilation errors compared to basic prompting. In fact,

for NL inputs, the CoT prompting resulted in more spec-

OOP errors (72 compared to 54). This is surprising because

the CoT prompt explicitly told GPT-4o to put preconditions

and postconditions at the right position. Similarly, CoT is

not significantly better than basic prompting on verification

errors, except errors about open/close/assert/leak statements

on FB+ input (47 compared to 77). This shows that in

almost all cases adding more instructions steps in a prompt

does not improve GPT-4o’s performance. However, when pre-

conditions, postconditions, and their predicate dependencies

are specified as needed for verification, CoT works well

for generating dependent auxiliary specifications. Thus, to

answer RQ2, GPT-4o generates VeriFast specifications with

limited success across the input types and prompting strategies

Error Code Basic Prompt CoT Prompt

Sub-code NL FB FB+ NL FB FB+

Compilation Error

spec-OOP 54 1 0 72 8 0

syntax 16 10 5 12 7 9

include & type check 33 8 9 39 13 10

Total 103 19 14 123 28 19

Verification Error

pre/postcondition 28 18 2 25 15 6

predicate definition 10 12 3 14 9 2

open/close/assert/leak 49 65 77 57 65 47

lemma definition 1 2 2 2 2 5

lemma use 24 28 28 27 27 27

loop invariant 9 10 9 9 10 12

others 8 7 11 9 8 7

Total 129 142 132 143 136 106

TABLE III: Error Code Analysis for Basic and CoT Prompts

assessed. Improvements to the prompting approaches or new

prompting approaches should be explored.

C. RQ3 - Convention Analysis

In the verifiable output, there were 10 cases of redundant

specifications that, while verifiable, could be simplified. This

includes 4 specifications with unnecessary encapsulation of a

predicate or lemma, 5 with redundant conditions, and 1 with

an unused predicate. For example, in the person predicate

definition in Listing 2, removing p != 0 doesn’t affect

correctness since other clauses imply it.

predicate person(struct person *p, ...) =

p != 0 &*& malloc_block_person(p) &*& ...

Listing 2: Predicate with a redundant condition

Thus, to answer RQ3, GPT-4o-generated verifiable speci-

fications occasionally include redundant elements, suggesting

the need to make GPT-4o aware of conventions.

D. Discussion and Suggestions for Future Work

Future work can resolve errors by a more fine-grained

prompt engineering method, such as refining prompt or input

granularity (e.g., granularity of function as in [22] [32] [21]),

or providing verifier’s feedback to LLM to guide the fix (e.g.,

[21]). Further, the performance differences among input types

show that providing example specifications to an LLM as part

of the prompting process may improve performance. Few-shot

prompting showed promise in related work [22] [24], and we

plan to evaluate this approach in future work. Fine-tuning (e.g.,

[52]) may also be an interesting avenue for exploration.

Threats to Validity: The results of our analysis is limited

with only 21 benchmarks, 1 verifier, and 1 LLM, but provides

useful results to build on. The benchmarks were open-sourced

years ago, so GPT-4o may have been trained on them biasing

our results; however, GPT-4o’s poor performance signals that



this bias is not impactful. Finally, while the analysis is me-

thodical, it remains subjective; efforts to mitigate bias include

thorough review, discussion, and consensus among conductors.

VII. CONCLUSION

This work is the first attempt to evaluate LLMs’ ability to

generate separation logic specifications for verification with

an auto-active verifier. We develop 21 benchmarks and design

three types of user input and two prompting methods to prompt

GPT-4o with. The results show that while the output generated

by GPT-4o preserves functional behavior in the input, it suffers

from significant errors that block automated verification. De-

spite more negative results, our work provides guidance for the

development of more effective prompt engineering approaches.

REFERENCES

[1] C. A. R. Hoare, “An axiomatic basis for computer programming,”
Communications of the ACM, vol. 12, no. 10, pp. 576–580, 1969.

[2] P. Müller, M. Schwerhoff, and A. J. Summers, “Viper: A verification
infrastructure for permission-based reasoning,” in Verification, Model

Checking, and Abstract Interpretation: 17th International Conference,

VMCAI 2016, St. Petersburg, FL, USA, January 17-19, 2016. Proceed-

ings 17. Springer, 2016, pp. 41–62.
[3] A. Lattuada, T. Hance, C. Cho, M. Brun, I. Subasinghe, Y. Zhou,

J. Howell, B. Parno, and C. Hawblitzel, “Verus: Verifying rust programs
using linear ghost types,” Proceedings of the ACM on Programming

Languages, vol. 7, no. OOPSLA1, pp. 286–315, 2023.
[4] K. R. M. Leino, “Dafny: An automatic program verifier for functional

correctness,” in International conference on logic for programming

artificial intelligence and reasoning. Springer, 2010, pp. 348–370.
[5] J. Fragoso Santos, P. Maksimović, S.-É. Ayoun, and P. Gardner, “Gillian,

part i: a multi-language platform for symbolic execution,” in Proceedings

of the 41st ACM SIGPLAN Conference on Programming Language

Design and Implementation, 2020, pp. 927–942.
[6] B. Jacobs, J. Smans, P. Philippaerts, F. Vogels, W. Penninckx, and

F. Piessens, “Verifast: A powerful, sound, predictable, fast verifier for
c and java,” in NASA formal methods symposium. Springer, 2011, pp.
41–55.

[7] B. Chen, F. Zhang, A. Nguyen, D. Zan, Z. Lin, J.-G. Lou, and
W. Chen, “Codet: Code generation with generated tests,” arXiv preprint

arXiv:2207.10397, 2022.
[8] S. Sarsa, P. Denny, A. Hellas, and J. Leinonen, “Automatic generation

of programming exercises and code explanations using large language
models,” in Proceedings of the 2022 ACM Conference on International

Computing Education Research-Volume 1, 2022, pp. 27–43.
[9] Y. Deng, C. S. Xia, H. Peng, C. Yang, and L. Zhang, “Large language

models are zero-shot fuzzers: Fuzzing deep-learning libraries via large
language models,” in Proceedings of the 32nd ACM SIGSOFT interna-

tional symposium on software testing and analysis, 2023, pp. 423–435.
[10] C. Lemieux, J. P. Inala, S. K. Lahiri, and S. Sen, “Codamosa: Escaping

coverage plateaus in test generation with pre-trained large language
models,” in 2023 IEEE/ACM 45th International Conference on Software

Engineering (ICSE). IEEE, 2023, pp. 919–931.
[11] N. Rao, K. Jain, U. Alon, C. Le Goues, and V. J. Hellendoorn, “Cat-

lm training language models on aligned code and tests,” in 2023 38th

IEEE/ACM International Conference on Automated Software Engineer-

ing (ASE). IEEE, 2023, pp. 409–420.
[12] M. Schäfer, S. Nadi, A. Eghbali, and F. Tip, “An empirical evaluation of

using large language models for automated unit test generation,” IEEE

Transactions on Software Engineering, 2023.
[13] J. Wang, Y. Huang, C. Chen, Z. Liu, S. Wang, and Q. Wang, “Software

testing with large language models: Survey, landscape, and vision,” IEEE

Transactions on Software Engineering, 2024.
[14] C. S. Xia, M. Paltenghi, J. Le Tian, M. Pradel, and L. Zhang, “Fuzz4all:

Universal fuzzing with large language models,” in Proceedings of the

IEEE/ACM 46th International Conference on Software Engineering,
2024, pp. 1–13.

[15] C. Zheng, H. Wang, E. Xie, Z. Liu, J. Sun, H. Xin, J. Shen, Z. Li,
and Y. Li, “Lyra: Orchestrating dual correction in automated theorem
proving,” arXiv preprint arXiv:2309.15806, 2023.

[16] K. Yang, A. Swope, A. Gu, R. Chalamala, P. Song, S. Yu, S. Godil,
R. J. Prenger, and A. Anandkumar, “Leandojo: Theorem proving with
retrieval-augmented language models,” Advances in Neural Information

Processing Systems, vol. 36, 2024.

[17] A. Q. Jiang, W. Li, J. M. Han, and Y. Wu, “Lisa: Language models
of isabelle proofs,” in 6th Conference on Artificial Intelligence and

Theorem Proving, 2021, pp. 378–392.

[18] S. Welleck and R. Saha, “Llmstep: Llm proofstep suggestions in lean,”
arXiv preprint arXiv:2310.18457, 2023.

[19] E. First, M. N. Rabe, T. Ringer, and Y. Brun, “Baldur: Whole-proof
generation and repair with large language models,” in Proceedings of

the 31st ACM Joint European Software Engineering Conference and

Symposium on the Foundations of Software Engineering, 2023, pp.
1229–1241.

[20] L. Ma, S. Liu, Y. Li, X. Xie, and L. Bu, “Specgen: Automated generation
of formal program specifications via large language models,” arXiv

preprint arXiv:2401.08807, 2024.

[21] A. Kamath, A. Senthilnathan, S. Chakraborty, P. Deligiannis, S. K.
Lahiri, A. Lal, A. Rastogi, S. Roy, and R. Sharma, “Finding in-
ductive loop invariants using large language models,” arXiv preprint

arXiv:2311.07948, 2023.

[22] M. R. H. Misu, C. V. Lopes, I. Ma, and J. Noble, “Towards ai-
assisted synthesis of verified dafny methods,” Proceedings of the ACM

on Software Engineering, vol. 1, no. FSE, pp. 812–835, 2024.

[23] F. He, J. Zhai, and M. Pan, “Beyond code generation: Assessing code llm
maturity with postconditions,” arXiv preprint arXiv:2407.14118, 2024.

[24] E. Mugnier, E. A. Gonzalez, R. Jhala, N. Polikarpova, and Y. Zhou,
“Laurel: Generating dafny assertions using large language models,”
2024. [Online]. Available: https://arxiv.org/abs/2405.16792

[25] P. Mukherjee and B. Delaware, “Towards automated verification
of llm-synthesized c programs,” 2024. [Online]. Available:
https://arxiv.org/abs/2410.14835

[26] J. C. Reynolds, “Separation logic: A logic for shared mutable data
structures,” in Proceedings 17th Annual IEEE Symposium on Logic in

Computer Science. IEEE, 2002, pp. 55–74.

[27] OpenAI, “Hello gpt-4o,” 2024. [Online]. Available:
https://openai.com/index/hello-gpt-4o/

[28] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman,
D. Almeida, J. Altenschmidt, S. Altman, S. Anadkat et al., “Gpt-4
technical report,” arXiv preprint arXiv:2303.08774, 2023.

[29] C. Flanagan and K. R. M. Leino, “Houdini, an annotation assistant
for esc/java,” in International Symposium of Formal Methods Europe.
Springer, 2001, pp. 500–517.

[30] K. R. M. Leino, G. Nelson, and J. B. Saxe, “Esc/java user’s manual,”
ESC, vol. 2000, p. 002, 2000.

[31] F. Vogels, B. Jacobs, F. Piessens, and J. Smans, “Annotation inference for
separation logic based verifiers,” in International Conference on Formal

Methods for Open Object-Based Distributed Systems. Springer, 2011,
pp. 319–333.

[32] J. Yao, Z. Zhou, W. Chen, and W. Cui, “Leveraging large lan-
guage models for automated proof synthesis in rust,” arXiv preprint

arXiv:2311.03739, 2023.

[33] F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles, and B. Yakobowski,
“Frama-c: A software analysis perspective,” Formal aspects of comput-

ing, vol. 27, no. 3, pp. 573–609, 2015.

[34] E. Mugnier, E. A. Gonzalez, R. Jhala, N. Polikarpova, and Y. Zhou,
“Laurel: Generating dafny assertions using large language models,”
arXiv preprint arXiv:2405.16792, 2024.

[35] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S.
Tschantz, and C. Xiao, “The daikon system for dynamic detection of
likely invariants,” Science of computer programming, vol. 69, no. 1-3,
pp. 35–45, 2007.

[36] K. Pei, D. Bieber, K. Shi, C. Sutton, and P. Yin, “Can large language
models reason about program invariants?” in International Conference

on Machine Learning. PMLR, 2023, pp. 27 496–27 520.

[37] D. Xie, B. Yoo, N. Jiang, M. Kim, L. Tan, X. Zhang, and J. S. Lee,
“Impact of large language models on generating software specifications,”
arXiv preprint arXiv:2306.03324, 2023.

[38] J. W. Nimmer and M. D. Ernst, “Automatic generation of program
specifications,” in Proceedings of the 2002 ACM SIGSOFT International

Symposium on Software Testing and Analysis, ser. ISSTA ’02. New
York, NY, USA: Association for Computing Machinery, 2002, p.
229–239. [Online]. Available: https://doi.org/10.1145/566172.566213

https://arxiv.org/abs/2405.16792
https://arxiv.org/abs/2410.14835
https://openai.com/index/hello-gpt-4o/
https://doi.org/10.1145/566172.566213


[39] B. Barras, S. Boutin, C. Cornes, J. Courant, J.-C. Filliatre, E. Gimenez,
H. Herbelin, G. Huet, C. Munoz, C. Murthy et al., “The coq proof
assistant reference manual: Version 6.1,” Ph.D. dissertation, Inria, 1997.

[40] T. Nipkow, M. Wenzel, and L. C. Paulson, Isabelle/HOL: a proof

assistant for higher-order logic. Springer, 2002.
[41] L. De Moura, S. Kong, J. Avigad, F. Van Doorn, and J. von Raumer, “The

lean theorem prover (system description),” in Automated Deduction-

CADE-25: 25th International Conference on Automated Deduction,

Berlin, Germany, August 1-7, 2015, Proceedings 25. Springer, 2015,
pp. 378–388.

[42] A. Sanchez-Stern, E. First, T. Zhou, Z. Kaufman, Y. Brun, and
T. Ringer, “Passport: Improving automated formal verification using
identifiers,” ACM Trans. Program. Lang. Syst., vol. 45, no. 2, 2023.
[Online]. Available: https://doi.org/10.1145/3593374

[43] K. Yang and J. Deng, “Learning to prove theorems via interacting with
proof assistants,” in International Conference on Machine Learning.
PMLR, 2019, pp. 6984–6994.

[44] E. First, Y. Brun, and A. Guha, “Tactok: semantics-aware proof
synthesis,” Proc. ACM Program. Lang., vol. 4, no. OOPSLA, 2020.
[Online]. Available: https://doi.org/10.1145/3428299

[45] M. Lu, B. Delaware, and T. Zhang, “Proof automation with large
language models,” in Proceedings of the 39th IEEE/ACM International

Conference on Automated Software Engineering, 2024, pp. 1509–1520.
[46] A. Q. Jiang, W. Li, S. Tworkowski, K. Czechowski, T. Odrzygóźdź,

P. Miłoś, Y. Wu, and M. Jamnik, “Thor: Wielding hammers to integrate
language models and automated theorem provers,” Advances in Neural

Information Processing Systems, vol. 35, pp. 8360–8373, 2022.
[47] A. Q. Jiang, S. Welleck, J. P. Zhou, T. Lacroix, J. Liu, W. Li, M. Jamnik,

G. Lample, and Y. Wu, “Draft, sketch, and prove: Guiding formal
theorem provers with informal proofs,” in The Eleventh International

Conference on Learning Representations, 2023.
[48] J. M. Han, J. Rute, Y. Wu, E. Ayers, and S. Polu, “Proof artifact co-

training for theorem proving with language models,” in International

Conference on Learning Representations, 2022.
[49] J. C. King, “Symbolic execution and program testing,” Communications

of the ACM, vol. 19, no. 7, pp. 385–394, 1976.
[50] P. Philippaerts, J. T. Mühlberg, W. Penninckx, J. Smans, B. Jacobs, and

F. Piessens, “Software verification with verifast: Industrial case studies,”
Science of Computer Programming, vol. 82, pp. 77–97, 2014.

[51] J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V. Le,
D. Zhou et al., “Chain-of-thought prompting elicits reasoning in large
language models,” Advances in neural information processing systems,
vol. 35, pp. 24 824–24 837, 2022.

[52] T. Chen, S. Lu, S. Lu, Y. Gong, C. Yang, X. Li, M. R. H. Misu, H. Yu,
N. Duan, P. Cheng et al., “Automated proof generation for rust code via
self-evolution,” arXiv preprint arXiv:2410.15756, 2024.

https://doi.org/10.1145/3593374
https://doi.org/10.1145/3428299

	Introduction
	Related Work
	Specification Generation for Auto-active Verifiers
	Program Invariant Generation with LLMs or ML
	Proof Synthesis for Proof Assistants with LLMs or ML

	VeriFast & Benchmarks
	VeriFast
	VeriFast Benchmarks used in the Evaluation
	Input-Output Pairs

	Prompt Engineering
	Qualitative Analysis
	Result & Discussion
	RQ1 - Functional Behavior Analysis
	RQ2 - VeriFast Specifications Analysis
	Impact of Input Type
	Impact of Prompting Method

	RQ3 - Convention Analysis
	Discussion and Suggestions for Future Work

	Conclusion
	References

