o.)

Check for
updates

PLIERS: A Process that Integrates User-Centered Methods
into Programming Language Design

MICHAEL COBLENZ, Carnegie Mellon University

GAURI KAMBHATLA, University of Michigan

PAULETTE KORONKEVICH, University of British Columbia

JENNA L. WISE, Carnegie Mellon University

CELESTE BARNABY, Facebook, Inc.

JOSHUA SUNSHINE, JONATHAN ALDRICH, and BRAD A. MYERS,

Carnegie Mellon University

Programming language design requires making many usability-related design decisions. However, existing
HCI methods can be impractical to apply to programming languages: languages have high iteration costs,
programmers require significant learning time, and user performance has high variance. To address these
problems, we adapted both formative and summative HCI methods to make them more suitable for program-
ming language design. We integrated these methods into a new process, PLIERS, for designing programming
languages in a user-centered way. We assessed PLIERS by using it to design two new programming languages.
Glacier extends Java to enable programmers to express immutability properties effectively and easily. Obsid-
ian is a language for blockchains that includes verification of critical safety properties. Empirical studies
showed that the PLIERS process resulted in languages that could be used effectively by many programmers
and revealed additional opportunities for language improvement.

CCS Concepts: « Human-centered computing — User studies; Usability testing; User centered design; « Soft-
ware and its engineering — Object oriented languages; Data types and structures;

Additional Key Words and Phrases: Usability of programming languages, programming language design

Gauri Kambhatla, Paulette Koronkevich, and Celeste Barnaby work conducted while at Carnegie Mellon University.

This material is based upon work supported by the National Science Foundation under grants CNS-1423054 and CCF-
1814826, by the U.S. Department of Defense, and by Ripple. In addition, the first author was supported by an IBM PhD
Fellowship.

Authors’ addresses: M. Coblenz, Department of Computer Science, University of Maryland, 8125 Paint Branch Drive, Col-
lege Park, MD 20742; email: mcoblenz@cs.cmu.edu; G. Kambhatla, Computer Science Department, University of Michi-
gan, 500 S. State St., Ann Arbor, MI, 48109; email: gkambhat@umich.edu; P. Koronkevich, Computer Science Department,
University of British Columbia, 2329 West Mall, Vancouver, BC, V6T 1Z4, Canada; email: pletrec@cs.ubc.ca; J. L. Wise, J.
Sunshine, and J. Aldrich, Institute for Software Research, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA,
15213; emails: {jlwise, joshua.sunshine}@cs.cmu.edu, jonathan.aldrich@cs.cmu; C. Barnaby, Facebook, Inc., 1 Hacker Way,
Menlo Park, CA, 94025; email: celestebarnaby@gmail.com; B. A. Myers, Human-Computer Interaction Institute, Carnegie
Mellon University, 5000 Forbes Ave., Pittsburgh, PA, 15213; email: bam@cs.cmu.edu.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2021 Copyright held by the owner/author(s).
1073-0516/2021/07-ART28
https://doi.org/10.1145/3452379

ACM Transactions on Computer-Human Interaction, Vol. 28, No. 4, Article 28. Publication date: July 2021.

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3452379
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3452379&domain=pdf&date_stamp=2021-07-23

28:2 M. Coblenz et al.

ACM Reference format:

Michael Coblenz, Gauri Kambhatla, Paulette Koronkevich, Jenna L. Wise, Celeste Barnaby, Joshua Sunshine,
Jonathan Aldrich, and Brad A. Myers. 2021. PLIERS: A Process that Integrates User-Centered Methods into
Programming Language Design. ACM Trans. Comput.-Hum. Interact. 28, 4, Article 28 (July 2021), 53 pages.
https://doi.org/10.1145/3452379

1 INTRODUCTION

Programming languages serve as interfaces through which programmers and software engineers
can create software. The ability of these users to achieve their goals, as with other kinds of inter-
faces, depends on the usability of the languages in which they do their work. For example, the
presence of null in Java results in a particular kind of error-proneness, since programmers can
easily accidentally write code that dereferences null [50]. These kinds of mistakes persist despite
the training and experience that professional software engineers have.

There is a long history of research on understanding how programmers’ cognitive processes
relate to the tools they use [60, 82, 84, 86]. This work was described in part in the proceedings of
the Empirical Studies of Programmers (ESP) and Psychology of Programming Interest Group
workshops. More recently, this line of work has continued at conferences such as CHI, ICSE, and
VL/HCC.

In this work, we focus on a high-level research question: How can programming language design-
ers leverage data from users to improve language usability? We can refine that question in terms of
three research questions:

Naturalness: How can we obtain insights as to what language designs will be natural for pro-
grammers, given that we are trying to obtain particular static safety guarantees in the
language?

Iteration: How can we iterate on a particular design so it continually gets to be more effective
for users?

Comparison: How can we compare multiple language designs to see which are more effective
for users?

Some authors, such as Stefik and Hanenberg, have focused on using quantitative approaches [88,
89]. Others have focused on in-depth case studies to evaluate their languages [1]. Our approach is
to integrate a wide variety of both qualitative and quantitative user-focused methods with formal
theory-based methods [73] to design programming languages [21, 62]. This approach allows us to
integrate user research into many different stages of the design process.

In order to address our three research questions, we adapted traditional human—-computer
interaction (HCI) methods to the context of the design of programming languages that target
professional software engineers. Then, we applied those adaptations to the design process of two
new languages, Glacier and Obsidian, which we used as testbeds for language design methods.
Finally, we combined the methods into a process we call PLIERS: Programming Language Iterative
Evaluation and Refinement System. This article describes the methods and process we developed,
and motivates them by showing the insights that we obtained by using the process on Glacier and
Obsidian. The Obsidian work is new in this article, and the Glacier work was partially discussed
previously [24].

Human-centered methods alone are not adequate to design a programming language because, if
a designer wants programs to have well-defined meanings (semantics) and well-understood safety
properties (soundness), the programming language must also be subject to a collection of semantic
constraints from the theory of programming languages. We have integrated strategic application

ACM Transactions on Computer-Human Interaction, Vol. 28, No. 4, Article 28. Publication date: July 2021.

https://doi.org/10.1145/3452379

PLIERS: A User-Centered Process for Programming Language Design 28:3

of our adapted programming language design and evaluation methods into a process that also in-
corporates formal methods so that the resulting languages can be both usable and sound. Although
the individual HCI methods have been applied in the HCI literature in a variety of contexts, this
article shows how we have adapted the methods and combined them to obtain insights regarding
programming languages that target professional software engineers. PLIERS is not a recipe for
language design, just as agile is not a recipe for software engineering. Instead, PLIERS provides a
process for organizing language design work around human-centered methods. For each step in
the design process, PLIERS suggests ways of integrating human-centered methods to inform the
designers.

Designing programming languages requires expertise in type systems, compilers or interpreters,
and language runtimes. As such, PLIERS is aimed at showing people with those technical tools
that it is feasible and effective to include user-centered methods. By doing so, the goal is that the
languages will be more effective for programmers than they might be otherwise.

This article makes three main contributions:

(1) We define the PLIERS programming language design process, which shows how user-
centered methods can contribute to many different phases of programming language cre-
ation. We assessed PLIERS by using it to develop two programming languages; we describe
the benefits and areas for improvement that we observed in the process (Section 3.2).

(2) We show how we have adapted several formative study techniques, such as natural program-
ming, Wizard of Oz, rapid prototyping, cognitive dimensions of notations analysis, and in-
terview studies to inform the design of Glacier and Obsidian. We found that our adapted
methods were effective when used in the context of PLIERS.

(3) We show how we conducted summative usability studies on new programming languages.
By developing ways of teaching the languages efficiently, effectively, and consistently, we
were able to conduct usability studies of programmers using novel programming languages.

We designed PLIERS for use with language designs that require developers to learn challenging
programming concepts or think in a new way. The safety properties that motivated the two lan-
guages we discuss in this article provided opportunities for language constructs that could poten-
tially be confusing, which made them ideal testbeds for PLIERS. However, other contexts provide
other kinds of conceptual challenges for programmers, and PLIERS may be similarly useful in those
contexts. For example, multicore programming results in concurrency challenges; distributed pro-
gramming requires managing asynchronous requests that may fail; and domain-specific languages
may require mastery of domain concepts. We expect that PLIERS will be useful for helping lan-
guage designers with any language that requires programmers to master difficult concepts.

This article assesses PLIERS by applying it to the design of two programming languages. This
approach had the benefit of providing us with concrete experience with the approach, which
we report on in this article. However, this approach to assessment does not provided a conclu-
sive evaluation of PLIERS; rather, we regard this as the first step toward evaluating PLIERS. In the
future, we hope that others will use PLIERS and report on their own experiences, providing more
breadth and additional perspectives on the process.

In developing PLIERS, we initially intended to apply known HCI methods, such as natural pro-
gramming [63], Wizard of Oz [30], interviews, and rapid prototyping. However, we found that the
study design process was very challenging due to the nature of programming and the complexity
of the design space. These challenges included:

Recruiting: How could we recruit participants who have sufficient programming skill and whose
results would generalize beyond the population of students, despite having limited access to
professional software engineers?

ACM Transactions on Computer-Human Interaction, Vol. 28, No. 4, Article 28. Publication date: July 2021.

28:4 M. Coblenz et al.

Training: How could we train participants in a new programming language in a short enough
amount of time to make studies practical?

High prototyping cost: How could we conduct user studies on programming languages that
have only informal designs and no implementations, since the cost of building working pro-
totypes is high?

Variance and external validity: How would we mitigate high variance, which is typical in pro-
gramming tasks, without constraining the tasks so much that they were no longer represen-
tative of real-world programming tasks?

The problems of variance and external validity were particularly relevant for quantitative stud-
ies, which needed to be practical in the context of our university setting. Programming tasks that
are not extremely constrained tend to produce results with high variance, making statistical signif-
icance hard to obtain. On the other hand, tasks that are highly constrained suffer from low external
validity, since real-world programming tasks are typically long and complex.

Therefore, we had to modify existing methods to address these challenges. Our study design
contributions are summarized in Section 6. For example:

—By adapting the natural programming technique to allow progressive prompting, we were able
to obtain both unbiased responses as well as data that were relevant to the particular designs
we were considering.

—By back-porting language design questions to languages with which participants were famil-
iar and by using the Wizard of Oz evaluation technique, we were able to obtain usability
insights on incomplete designs, and isolate the design questions of interest from confound-
ing variables.

— By dividing large tasks into multiple, smaller tasks, and by using pilot studies to set task
time limits effectively in quantitative studies, we were able to reduce variance sufficiently to
obtain meaningful results in complex programming tasks, which otherwise would have had
very high variance.

— By recruiting participants who were representative of at least some junior-level professional
developers, we were able to increase the external validity in our studies while still conducting
them practically at a university setting. We were also able to show usability impacts of the
language designs under consideration.

— By developing incremental tutorials with integrated practice opportunities, we were able
to teach the languages to participants in a short time (for Obsidian, about 90 minutes was
typical).

In order to contextualize the methods we describe in this article, Sections 1.1 and 1.2 explain
the two languages that we used to develop the methods. Section 2 discusses related work, and
Section 3 introduces PLIERS. The rest of the article proceeds by showing how we used PLIERS in
Glacier (Section 4) and Obsidian (Sections 5.1 to 5.3). Then, we discuss the challenges to effective
study design that we observed while creating those two languages and how we addressed those
challenges (Section 6). We propose future work and conclude in Sections 7 and 8.

1.1 Glacier

Glacier [24] is an extension to Java that supports transitive class immutability. Although security
experts had recommended expressing state in an immutable way whenever possible [13], it was
unclear how programming languages should support immutability. For example, Java includes the
final keyword, but because final only restricts assignment to variables and not mutation of

ACM Transactions on Computer-Human Interaction, Vol. 28, No. 4, Article 28. Publication date: July 2021.

PLIERS: A User-Centered Process for Programming Language Design 28:5

referenced state, actually enforcing immutability in Java is very difficult. The Java code below
compiles without error despite the assignment and the use of final:

final int a[] = {0};
alo] = 42;

In designing Glacier, we sought to show how a language design might support the use of
immutability in practical programming languages. Immutability means that objects cannot be
changed after they are created. Several organizations recommend the use of immutability to
prevent security vulnerabilities in software. For example, Oracle’s Secure Coding Guidelines for
Java [77] and Microsoft’s Framework Design Guidelines [76] both recommend using immutability
for security reasons. However, we found that there were hundreds of different possible designs for
immutability protection in programming languages, and it was unclear which approaches might
be usable by programmers and which might actually support programmers’ needs [27].

To determine a point in the design space that might be useful and effective, we conducted semi-
structured interviews with eight software engineers. In those interviews, we asked questions about
bugs, such as “Can you think of a bug you investigated or fixed that was caused by a data struc-
ture changing when it should not have?” [28]. All the participants who worked on software with
significant amounts of state said that incorrect state change was a major source of bugs.

As a result, we hypothesized that transitive immutability might be a useful point in the design
space to pursue. Transitive means that the restriction applies not just to a class, but recursively to
all of its fields. Immutability means that objects to which the restriction applies cannot have any of
their data modified through any reference, as opposed to the restriction only applying to certain
references to a given object. This kind of immutability would provide strong guarantees, which
developers could rely on to protect against improper changes to state.

We initially adapted an existing system, IGJ [104], to enforce transitivity. We found in a usability
study, however, that there were significant usability challenges with this approach, which related
to the flexibility provided by IG]J to apply restrictions to individual objects. This led us to create
Glacier, which supports transitive class immutability, in which classes that are declared immutable
have all instances immutable. We were able to show that Glacier (a) could be used effectively
by our study participants to specify immutability; and (b) detected improper-mutation bugs that
participants frequently inserted in the codebase when they were using regular Java.

The final version of Glacier provides a new annotation, @ mmutable, which can be applied
to class definitions. @Immutable indicates that every instance of that class must be transitively
immutable. The alternative to @Immutable is @MaybeMutable, which applies by default. The
compiler checks classes that are annotated @Immutable and gives an error if any of the fields are
references to classes that are themselves not @ mmutable. Also, assignment is disallowed to fields
of @Immutable classes except in their constructors. For example, the comments indicate that the
compiler would emit errors for lines 3 and 6:

1 @Immutable class Person {

2 String name; // OK; String is @Immutable

3 Date birthdate; // Error; Date is @MaybeMutable

4

5 void setName(String n) {

6 name = n; // Error; cannot assign to fields of @Immutable classes
7 }

8 }

In Section 4, we describe how we used qualitative methods to ground our initial design in user
data. We also describe a Randomized Controlled Trial (RCT) we conducted, which showed

ACM Transactions on Computer-Human Interaction, Vol. 28, No. 4, Article 28. Publication date: July 2021.

28:6 M. Coblenz et al.

that participants who used Glacier were more likely to be able to complete tasks correctly than
participants who used final.

1.2 Obsidian

Obsidian is targeted at programming blockchains [49], in which a decentralized network of com-
puters maintains system state and executes transactions. Blockchains support deploying smart
contracts, which are programs that maintain state. Typically, each deployment is an instance of a
class, though in a blockchain context, the keyword contract is used instead of class. In contrast
to most of the existing user-centered programming language work, which often focuses on novice
or end-user programmers [53], Obsidian is intended for use by professional programmers and soft-
ware engineers. Unfortunately, although we are interested in evaluating how the language will be
used in the long term, we are limited in our ability to recruit software engineers to participate in
lengthy studies. We mitigated those difficulties in part by recruiting master’s students, some of
whom had professional experience, and by including enough training in the study that we could
study more than only the learning process. After our design was complete, we found in a summa-
tive study that most of the participants were able to complete programming tasks successfully in
Obsidian.

Blockchains, which have been proposed for high-stakes applications such as financial transac-
tions, health care [47], supply chain management [51], and others [34], are an ideal testbed for a
new language design process. The need for a safer language is motivated by the history of security
vulnerabilities, through which over $80 million worth of virtual currency has been stolen [39, 85].
Some other projects assume that the developers will be experts in formal verification or that or-
ganizations will invest the resources required to formally verify their programs [3, 8, 48]. That
approach may be unrealistic, requiring too much resources and expertise. Instead, we seek a more
lightweight approach that provides additional safety guarantees at low cost to developers.

We established several objectives in our design of Obsidian:

(1) Improve safety by detecting more bugs than current smart contract languages do, preferably
at compile time, to prevent deployment of buggy programs.

(2) Maximize usability by ensuring that programmers can complete domain-appropriate pro-
gramming tasks, ideally with little training in the language.

(3) Advance the science of programming language design by developing user-centered methods
that can contribute to a more usable language.

Detecting bugs was our initial objective, so we considered bugs, such as the DAO hack [31],
which resulted from a reentrant invocation in which a contract allowed itself to be invoked while
in an inconsistent state. We also analyzed characteristics of proposed blockchain applications. In
general, we observed that proposed blockchain applications typically maintain high-level state,
which governs which operations are safe. We described our analysis of existing blockchain systems
and proposals in more detail in earlier work [29].

For example, a Casino can accept bet invocations only before the Game has been played. More
generally, the authors of Solidity [38], a commonly-used smart contract language, observed that
many contracts implement state machines [37]. Unfortunately, in Solidity, users must define states
via enumerated types and then manually ensure that methods are only invoked when the target
object is in an appropriate state. Although methods that can only be invoked in particular states
are common [5], writing programs that only invoke methods when appropriate has been shown
to be hard for users [92], and Solidity includes no mechanism to ensure safety.

A second observation was that smart contracts commonly manipulate assets, which are objects
that have value (such as cryptocurrencies). In Solidity, it is possible to lose track of money and

ACM Transactions on Computer-Human Interaction, Vol. 28, No. 4, Article 28. Publication date: July 2021.

PLIERS: A User-Centered Process for Programming Language Design 28:7

other assets [32], resulting in their value being permanently irretrievable. We were interested in
designing a language in which many kinds of asset loss could be detected by the compiler.

In order to leverage those observations, we became interested in a typestate-oriented ap-
proach [2], in which states of objects are incorporated into types. For example, rather than merely
having a LightSwitch type, we can have LightSwitch@On be the type of a reference to an ob-
ject that is in the On state. Then, if the user attempts an invalid operation, such as turning on a
switch that is already on, the compiler can issue an error.

Typestate-based types are in a class called linear types. Unlike traditional types, linear types can
change as operations are performed. For example, invoking turnOff () on a reference of type
LightSwitch@On changes the type of the reference to LightSwitch@Off. Conveniently, linear
types are also what are needed to ensure that assets are never lost. Obsidian includes owned objects:
for each owned object, there is an object that owns it via an owning reference. If a local variable
that owns an asset goes out of scope, the compiler emits an error message. Fields that own assets
can only exist in contracts that are themselves assets. This way, each asset always has an owner.

We selected an object-oriented approach, since object-oriented approaches are well-suited for
representing state and corresponding updates. We avoided inheritance, since we wanted to avoid
the fragility that results [59]. For a full description of the language, please refer to Coblenz et al.
[26]. However, Figure 1 shows some of the key features of the final version of Obsidian using
the example of a tiny vending machine (TVM). TVM is a main contract, so it can be deployed
independently to a blockchain. A TVM has a very small inventory: just one candy bar. It is either
Full, with one candy bar in inventory, or Empty. Clients may invoke buy on a vending machine
that is in Full state, passing a Coin as payment. When buy is invoked, the caller must initially
own the Coin, but after buy returns, the caller no longer owns it. buy returns a Candy to the caller,
which the caller then owns. After buy returns, the vending machine is in state Empty.

The design process for Obsidian included four formative user studies, which we describe in Sec-
tion 5.1. We discuss our summative usability study in Section 5.2. Finally, we summarize our RCT
comparing Obsidian to Solidity in Section 5.3. For example, in one task, Obsidian programmers
were able to avoid losing an asset that the Solidity programmers frequently lost track of.

2 RELATED WORK

Newell and Card argued for the use of HCI methods in programming language design in 1985: “Mil-
lions for compilers but hardly a penny for understanding human programming language use [64]”
Morrisett reiterated this problem in 2009, arguing that a programming language is a medium for
communication among humans, but we lack principles for evaluating this aspect of languages [74].
Our earlier essay argued for using many different methods in language design [21]. Although that
article promoted the use of formative methods (among others), this article describes the methods in
much more detail, giving recommendations for how other designers might use them in their own
work. This article also includes our experiences with Obsidian, including techniques we developed
during that work. Finally, it describes PLIERS, which is our overall language design process.

The ESP workshops focused in large part on a cognitive science approach to studying program-
mers: Can we build models of cognition that explain programmer behavior? Key results include
describing techniques used by programmers when working with code, such as identifying key lines
(beacons [102]), relating program details to the problem domain [43, 44], and using both top-down
and bottom-up understanding techniques [96, 100]. The ESP literature provided insights into the
problems that people have when using existing languages.

Some of the work in ESP workshops studied professional programmers. For example, Pen-
nington used theories of understanding of natural language text to model expert programmers’
comprehension of programs [70], finding that procedural knowledge (rather than knowledge of

ACM Transactions on Computer-Human Interaction, Vol. 28, No. 4, Article 28. Publication date: July 2021.

28:8 M. Coblenz et al.

1 // TVM is a Tiny Vending Machine.

2 main asset contract TVM {

3 Coins @ Owned coinBin;

4

5 state Full {

6 Candy @ Owned inventory;

7 }

8

9 // No candy if the machine is empty.

10 state Empty;

11

12 TVM() {

13 // Start with no coins, and go to the Empty state.
14 coinBin = new Coins();

15 ->Empty;

16 }

17

18 // restock transitions from Empty to Full by taking ownership of candy.
19 transaction restock(TVM @ Empty >> Full this,

20 Candy @ Owned >> Unowned candy)
21 {

22 ->Full(inventory = candy);

23 }

24

25 // buy transitions from Full to Empty by taking ownership of a coin.
26 // buy returns the purchased candy.

27 transaction buy(TVM @ Full >> Empty this,

28 Coin @ Owned >> Unowned coin)

29 returns Candy @ Owned

30 {

31 coinBin.deposit(coin);

32 Candy result = inventory;

33 ->Empty;

34 return result;

35 }

36

37 // withdraw removes any accumulated coins and returns them to the caller.
38 transaction withdraw() returns Coins @ Owned

39 {

40 Coins result = coinBin;

41 coinBin = new Coins();

42 return result;

43 }

44

Fig. 1. A TVM that shows key features of Obsidian.

functional units) dominated their understanding. The study was conducted on COBOL programs,
which were likely structured substantially differently from modern software. Furthermore, no li-
braries or frameworks were used, so the fact that the programmers could see and consider all
relevant code may have resulted in a substantially different kind of programming task than the
ones that we consider today. However, the approach suggests that a cognitive modeling approach

ACM Transactions on Computer-Human Interaction, Vol. 28, No. 4, Article 28. Publication date: July 2021.

PLIERS: A User-Centered Process for Programming Language Design 28:9

may help derive a theory of programmers that is relevant for designing programming languages.
In this work, we rely on more recent, heuristic-based approaches, such as the Cognitive Dimen-
sions of Notations [41], which are applicable in more general domains, and which came out of the
cognitive science-based approach that was central in the ESP work.

Visser described a 4-week observational study of one professional programmer working in a
declarative, domain-specific language [99]. Visser noted that obtaining mental models was chal-
lenging because the programmer found think-aloud very difficult while working on problems, but
made observations about the structure of the programmer’s work. For example, the programmer
used analogical reasoning and examples to help reason about the software; used both top-down
and bottom-up work styles; and sought consistency in the program. This work provides an empir-
ical foundation for some requirements of programming environments, such as allowing creation
of interfaces separately from implementations, and providing tools to standardize notation (e.g.,
style linting tools).

Vans et al. conducted a study of the comprehension process and information needs of program-
mers in industry doing maintenance tasks [96]. Some of the understanding techniques that the
programmers used were similar to methods that were observed in novices as well, including top-
down, bottom-up, and code-tracing methods, but the professionals used a much wider variety of
techniques than had been observed in novices, such as generating and abandoning large numbers
of hypotheses regarding the programs. This suggests that programming language design studies
conducted with students can give some guidance regarding languages intended for professionals,
but such studies may be limited in the kinds of techniques that the participants use. In many of
the studies presented in this article, we recruited experienced students, who in many cases had
several years of professional programming experience. This approach allowed us to broaden the
set of techniques our participants would use to accomplish their tasks and make our results more
generalizable relative to using only novice programmers.

Guindon et al. used protocol analysis [36] to analyze think-aloud protocols from three expe-
rienced programmers who were asked to design software to solve an elevator-scheduling prob-
lem [44]. Guindon et al. observed breakdowns in process that arose from lack of knowledge (e.g.,
of the problem domain) and from cognitive limitations (e.g., capacity of short-term memory). Be-
cause this work consisted of a think-aloud study of programmers, it shares several threats to valid-
ity with the qualitative work we describe here: a task that may not reflect real-world tasks; short
duration of the task, which was concentrated in a lab-based two-hour session; and a sample of
programmers that may not be representative of programmers in general. Our approaches to miti-
gating external validity were similar to theirs. We recruited from students who were likely to have
some professional experience and do not claim that all programmers will encounter the same diffi-
culties that they did. We do not claim that we observed all possible problems that users might have
when using the tools we gave them. Instead, we argue that addressing the problems we observed
is likely to help some relevant users be more effective in achieving their goals. In our approach
to think-aloud studies, we analyzed notes taken by the experimenter and screen recordings of the
participants doing the tasks.

Direct observations of work and interviews have both been used to understand how teams work
together to develop software. Walz et al. analyzed videos of teams conducting a requirements analy-
sis to study conflict patterns [101]; Krasner et al. interviewed members of 19 software development
teams to understand team communication [56]. Although our work focused on individual devel-
opers, we used multiple methods where appropriate. This work shares threats to external validity
with other small-sample studies, including the ones we conducted. Krasner et al. mitigated these
risks by choosing diverse teams to study. Although Walz et al. only studied one team, they studied
the team for 43 meetings over 4 months.

ACM Transactions on Computer-Human Interaction, Vol. 28, No. 4, Article 28. Publication date: July 2021.

28:10 M. Coblenz et al.

A substantial amount of prior work on the usability of programming languages focuses on
novices. For example, HANDS [69], Helena [18], and Scratch [78] aimed to make it easier for
novices to write programs. HANDS, in particular, introduced the Natural Programming technique,
which we leveraged and adapted in this work. Stefik et al. also focused on novices, collecting quanti-
tative data on their error rates [90]. Designing languages for novices is substantially different from
designing languages for experienced programmers. For example, languages for novices typically
focus on learnability. In contrast, languages for professionals commonly include additional com-
plexity, in part resulting from the kinds of safety properties that are beneficial when building real
systems.

Other work has focused on programming tools for end-user programmers, whose primary goal
is not to write software but rather to accomplish goals in some particular domain [54]. For exam-
ple, Blackwell developed Attention Investment, and he and and Burnett applied it to a research
spreadsheet tool, Forms/3 [11]. Peyton Jones et al. used Cognitive Dimensions [41] and Attention
Investment to provide a new kind of user-defined functions in Excel [52]. Our work is focused on
methods that address the unique challenges of complexity that result from targeting professional
programmers and software engineers.

RCTs have been used to compare different programming language designs. For example, Ues-
beck et al. investigated the impact of lambdas in C++ [94], and Endrikat et al. looked at static typ-
ing [35]. That work is a useful complement to this work, but the focus here is on using low-cost,
practical qualitative methods to inform the entire language design process. In contrast, quantita-
tive summative studies require high-fidelity prototypes in order to obtain measurements that can
be expected to generalize to the final system. These prototypes can be very expensive to build for
complex programming languages.

Another approach to programming language evaluation is to compare designs via crowdsourc-
ing methods. Chamberlain [17] compared functional-style to literal-style approaches for specify-
ing topology of streaming applications (i.e., pipes-and-filters style applications) using Mechanical
Turk, finding that users were more likely to prefer literal-style specifications, and experienced
programmers were more likely to understand the literal-style specifications than the functional-
style ones. Wilson et al. [103] investigated crowdsourcing more esoteric language design decisions,
finding low consistency (people did not give consistent answers when asked similar questions
repeatedly) and low consensus (people did not agree with each other on which design choice
was best). Crowdsourcing approaches can scale well, but typically require that the studies be of
relatively short duration. This article focuses on higher-bandwidth qualitative methods and on
evaluation approaches for languages for professionals, and serves to complement crowdsourcing
approaches.

The HCI literature includes many different language designs as well as other kinds of tools
for programmers. For example, Dog/Jabberwocky [1], Protovis [14], Reactive Vega [81], and Inter-
State [68] are all languages or APIs that make it easier for programmers to accomplish their goals.
Those papers describe only the final designs of those systems and summative usability studies. This
article focuses on methods that can be used during the design process and gives recommendations
that are useful in preparing a summative evaluation.

Finally, there is a variety of methodological guidance in SE and HCI that is applicable to studies
of programming languages. Ko et al. discussed techniques for doing empirical studies of tools for
software engineers [55]. Buse et al. conducted a systematic literature review, observing increas-
ing use of user evaluations in software engineering research [16]. Verner et al. gave guidelines
for industrial case studies in software engineering research [98]. Perry et al. gave a tutorial on
case study methodology for software engineers [72]. Likewise, Shneiderman and Plaisant gave
recommendations for using case studies for information visualization tools [83].

ACM Transactions on Computer-Human Interaction, Vol. 28, No. 4, Article 28. Publication date: July 2021.

PLIERS: A User-Centered Process for Programming Language Design 28:11

3 PLIERS
3.1 Defining PLIERS

PLIERS is summarized in Figure 2. A user-centered design methodology [45] seeks to leverage data
from users to improve the design of systems. PLIERS is a specialization of user-centered design
for programming languages to enable designers to incorporate ideas from user studies as well as
from the theory of programming languages. PLIERS consists of five phases: need finding, design
conception, risk analysis, design refinement, and assessment. In each phase, the designer seeks
and leverages input from or about the users that the designer is hoping will use the programming
language. If work in any phase calls into question the work done in a previous phase, the designer
may return to the previous phase and conduct more work according to the difficulties that were

identified.

Need finding: The process begins by assessing the user’s needs. What programming problems
does the user have, and how might a new programming language help the user achieve their
programming goals? Some have advocated that language designers should design languages
for their own use [40]. In contrast, PLIERS uses user-centered methods, such as a corpus
study, interview, or contextual inquiry to understand the target audience and what their
needs are. The designer chooses which particular user-centered methods to use according
to the available resources and the goals of the design project. These user needs may be stated
as hypotheses regarding what kinds of languages might benefit users, what benefit means
to those users, and how those benefits might be assessed.

Design conception: After assessing users’ needs, the designer must conceive of initial language
ideas that might satisfy those needs. As in other design situations, this process often requires
significant creativity. The designer iterates between two kinds of work: theoretical work, in
which the designer develops a theoretical foundation for the programming language (a core
calculus), and prototyping work, in which the programmer directly works on the language
that programmers will see (the surface language). The result of this work is expressed as a
low-fidelity prototype, such as a corpus of code samples (to demonstrate the surface syntax,
by which users will write and edit programs) and a core calculus.

Risk analysis: In the risk analysis phase, the designer assesses and prioritizes usability risks in
the proposed design. This step leverages theoretical models of cognition and usability in-
spection techniques to identify the aspects of the language design that are most likely to
present difficulties to users. For example, cognitive dimensions of notations [41] can help
identify usability risks that are worthy of further study.

User research might be needed in this phase to better understand the target audience.
For example, if the designer is considering an approach that requires particular skills,
then risk analysis might include assessing to what extent the target audience has those
skills or whether those skills can be taught in an acceptable amount of time. If the lan-
guage targets professionals, substantial training may be acceptable. If the language tar-
gets end-user programmers, the designer may want to limit the training that would be
required.

The prototype design likely leverages some elements of existing languages, while creating
new features that may be unfamiliar to users and have unknown usability characteristics.
These new features may be particularly worth evaluating. Each risk corresponds to a design
or research question, and provides an opportunity for learning more about how to make the
programming language as usable as possible.

Design refinement: Using empirical methods, the designer assesses the usability risks identi-
fied in the prior phase. Then, the designer refines the prototype, successively increasing

ACM Transactions on Computer-Human Interaction, Vol. 28, No. 4, Article 28. Publication date: July 2021.

28:12

M. Coblenz et al.

Need finding

User-centered needs assessment
Interviews
Corpus studies
Contextual inquiry

Design conception

Preliminary theoretical analysis
Core calculus development
Statements of key properties
Proof sketches

«>

Low-fidelity prototyping
Example programs
Interpreter/compiler for key constructs
Natural programming elicitation

Risk analysis

Usability risk analysis
Cognitive Dimensions of Notations
Comparison with prior systems
User research

Eo=r=o=p=c=

Design refinement

Empirical methods
Usability studies
Natural programming
Performance testing
Case studies

o

7N\
(&)
N

N

Prototype refinement
Interpreter/compiler implementation
Programmer experience work

Theoretical refinement
Completing core calculus
Proofs of key properties

Assessment

Usability studies
Quantitative comparisons
Randomized controlled trial (RCT)

Fig. 2. The phases of the PLIERS process, showing activities conducted in each phase. Designers can return
to previous phases if evaluation identifies opportunities for improvement.

prototype fidelity as usability risks are addressed. The designer also considers other lan-
guage requirements, such as expressiveness (can the language be used to write a particular
kind of program?) and performance (does the program, when run, meet the designer’s perfor-
mance goals?). Then, the results are used to revise the theoretical model and the prototype.
By using theory, the designer can ensure that any changes retain any formal guarantees
that the language promises. Alternatively, the designer may choose to guarantee different
properties in order to allow the desired modifications.

ACM Transactions on Computer-Human Interaction, Vol. 28, No. 4, Article 28. Publication date: July 2021.

PLIERS: A User-Centered Process for Programming Language Design 28:13

Because the theoretical model and prototype are related, changes in one frequently lead to
changes in the other. Eventually, the theoretical analysis will include proofs of key properties,
and the prototype will be high-fidelity, typically including IDE support and a compiler or
interpreter.

Assessment: A summative usability study can assess whether the final design has achieved the
designers’ usability objectives. In contrast to the formative usability studies in the previous
phase, which assess specific aspects of the language design, a summative usability study
is intended to assess programmers’ abilities to complete realistic programming tasks. In a
summative usability study, one gives participants tasks to complete and collects data such
as time to task completion, fraction of participants who complete tasks, and errors made.
One can also conduct an RCT to compare a design to a competing one. The key difference
between a summative usability study and an RCT is that an RCT includes random assignment
and a control condition.

In this article, we focus on usability-related objectives, but the designer may want to
conduct performance testing as well. For performance evaluation, we refer readers to the
SIGPLAN empirical evaluation checklist [6].

In developing the PLIERS process, we identified a collection of adaptations to traditional HCI
methods, which helped us obtain useful information, primarily in the design refinement and as-
sessment phases. Here, we describe some of the key ways in which we modified existing methods,
which are further discussed in Section 6. The methods we have found useful are summarized in
Table 1.

Back-porting design questions to existing languages: To study the usability of a design deci-
sion in isolation, we start from an existing language with which participants would already
be familiar. For example, rather than asking participants in our early formative studies to
learn a whole programming language, we told them that we were adding certain features
to Java, and then asked them to complete programming tasks in the Java variant. This sub-
stantially reduced the training time and allowed us to reason that any confusion was likely
related to the new features, since our participants were already familiar with Java.

Selecting a target language for back-porting depends on several factors:

(1) Availability of participants skilled in the target language.

(2) High-level similarity between the novel language and the target language (e.g., both
object-oriented and both functional).

(3) For high-fidelity prototypes: development cost of modifications to target language.

We also favored high-level design decisions that allowed us to attract participants who
had relevant background. If we had tried to teach participants a completely novel lan-
guage paradigm even though the basic assumptions of the language paradigm were not
the targets of our research, we would have needed to try to distinguish the relevant mis-
takes from all the novice-level mistakes that the new programmers would be likely to
make.

Wizard of Oz: Implementing a programming language is expensive. Rather than implementing
a full compiler for each language variant we wanted to test, we adapted the Wizard of Oz
technique [30]. In a classic Wizard of Oz study, an experimenter pretends a system is working
by remote-controlling it in order to obtain insights about potential designs without having
to actually build the system.

In early Obsidian studies, we gave participants a text editor, documentation, and program-
ming tasks to do. Then, an experimenter verbally simulated compiler errors. Like a modern
IDE, the experimenter could interject with errors, and could provide error messages when

ACM Transactions on Computer-Human Interaction, Vol. 28, No. 4, Article 28. Publication date: July 2021.

28:14

M. Coblenz et al.

Table 1. A Summary of User-centered Methods that We Have Found Useful for Studies in PLIERS

Design Task Method or Details Examples
Component
Need finding Interviews e Interview practitioners (e.g., soft- Glacier
and ware engineers) to identify problems (Section 4.1)
hypothesis and formulate hypotheses
generation
Corpus analysis e Analyze corpora of applications and Obsidian
bugs to identify common goals and (Section 1.2)
obstacles
Formative Natural program- e Ask participants to do programming Obsidian
design ming elicitation problems without giving them syn- (Section 5.1.1)
evaluation tax or identifiers in order to help de-
sign a syntax and vocabulary that
matches their expectations
Programming tasks e Back-port design components to an Glacier
existing language to isolate variables (Section 4.1),
of interest Obsidian
e Break larger tasks into subtasks to (Section 5.1)
constrain unproductive exploration
e Include a range of task difficulties to
obtain data from both more- and less-
successful participants
e Use low-fidelity prototypes to obtain
early feedback on designs
e Use Wizard of Oz to enable studies of
incomplete prototypes
Summative Usability studies e Assess what barriers users face when Obsidian
design attempting to complete relevant pro- (Section 5.2)
evaluation gramming tasks
RCTs e Compare task times and success Glacier
rates between different languages (Section 4.2),
Obsidian

(Section 5.3)

participants asked whether the compiler would emit any errors on their current code. For
example, the experimenter might say “Suppose your compiler indicated that there was asset
loss that occurred on line 42” If the error messages were unclear, the experimenter could
revise them with more detail, helping us understand how to write clear error messages for
the compiler. The technique we developed allowed efficient iteration on our design ideas,
since design changes only required updating the documentation, not a potentially complex
implementation. Unlike in a traditional Wizard of Oz study, participants were aware that the

ACM Transactions on Computer-Human Interaction, Vol. 28, No. 4, Article 28. Publication date: July 2021.

PLIERS: A User-Centered Process for Programming Language Design 28:15

feedback was being provided manually, but we observed that this did not present an obstacle
to the effectiveness of the technique.

Multi-part tutorials: In our studies, we needed to teach participants a new programming lan-
guage in a consistent and efficient way. A traditional course would not be effective, since we
could not recruit our participants into a semester-long course. Instead, we developed multi-
part language tutorials. By breaking the tutorial into sections (each about ten minutes long),
including practice problems for participants to do, and having an experimenter available to
answer questions, we were able to convey the knowledge we needed in a relatively short
period of time. Our longest tutorial, for example, took participants an average of 1 hour, 35
minutes.

3.2 Assessing PLIERS

To assess to what extent PLIERS is an effective tool for language design, one might like to teach
PLIERS to a collection of programming language designers and conduct a qualitative study regard-
ing the insights the designers obtained. Better yet, one might like to recruit language designers and
assign them to either use or not use PLIERS to design a language in a domain, and then conduct
usability studies of the resulting languages. Unfortunately, these approaches are impractical: lan-
guage design and implementation is typically a long process, taking months or years, and language
designers cannot be recruited for such studies.

Another approach might be to teach PLIERS to designers who have recently completed their de-
signs and observe what changes the designers make as a result. However, a main benefit of PLIERS
is that it provides a framework for the entire language creation process; many of the methods can
be applied to incomplete prototypes or design concepts. Such an analysis, though useful, would
only obtain insights on some of the components of PLIERS.

Because of these practical considerations, we assessed PLIERS by using it ourselves to create
Glacier and Obsidian. In the process, we observed how the approach helped us create and iterate
on the language designs. This approach has significant limitations. Our evaluation does not show
that other designers can use the process effectively, that it works on a wide variety of different
programming languages, that languages produced with the method are necessarily superior to
languages produced without the method, or even that the process does not make languages worse.
However, using PLIERS ourselves was a necessary part of developing the process; in this article, we
leverage our experience creating PLIERS in the hope that others may benefit from it and iterate
on its component methods. As this is the first work of which we are aware that integrates HCI
methods into the design of languages for professional software engineers, we view this as the
first step toward creating a design process that will aid designers in making professional-level
languages more usable.

Venable et al. provide a framework for evaluating design methodologies [97]. In that framework,
our approach to evaluating PLIERS would be considered ex ante (formative, evaluating the design
method before it is complete). The ex ante approach was appropriate for PLIERS since the work
was conducted in large part to create and iterate on PLIERS. The evaluation included some aspects
of naturalistic evaluations (it was evaluated in the context of real language design projects) and
some aspects of artificial evaluations (the designers of the method used the method instead of
third parties). This choice was driven by the impracticality of recruiting programming language
designers other than ourselves to use our process over the long period of time required to conduct
a language design and implementation project.

Blandford and Green have acknowledged the lack of an established path to acceptance for new
methods and the difficulty of conducting rigorous evaluations of design methods [12]. We regard
our work as the first step of many in evaluating PLIERS.

ACM Transactions on Computer-Human Interaction, Vol. 28, No. 4, Article 28. Publication date: July 2021.

28:16 M. Coblenz et al.

4 PLIERS FOR GLACIER

In Glacier, we conducted both formative studies (before the design was complete) and summative
studies (evaluating a complete design). Before we developed Glacier, we conducted formative stud-
ies (Section 4.1) to develop a hypothesis regarding which particular kind of immutability might
have direct benefits to programmers. We developed IGJ-T based on this hypothesis, but our risk
analysis suggested that the flexibility of IGJ-T might result in usability barriers. We conducted a
usability study of IGJ-T, which confirmed our hypothesis. Then, we refined our design to create
Glacier, and conducted a summative study to answer two usability questions: first, can people
easily specify immutability with Glacier, and if so, is it easier with Glacier than it is with Java?
Second, does providing compile-time enforcement of immutability prevent bugs that would likely
be inserted otherwise? Section 4.2 shows that the answers are in the affirmative.

4.1 Formative Studies

We used the Cognitive Dimensions of Notations framework [41] to reason about some of the design
choices. For example, including features that provided weaker guarantees than programmers ac-
tually needed could be error-prone if those features could be easily confused with stronger ones.
Likewise, the inverse is error-prone too: if a programmer applied a weaker specification than could
actually be applied, this could lead to undesirable tradeoffs. For example, if an interface is anno-
tated to return a read-only object (indicating that the object potentially could be mutated through
other references), the programmer might add locks to ensure safety in a concurrent context. But if
the object is actually immutable (that is, no reference could be used to mutate the object), then the
locks would be unnecessary and reduce performance. More details about our Cognitive Dimen-
sions analysis appear in our earlier article [27].

Although the Cognitive Dimensions analysis was lightweight, it did not answer some of our
higher-level design questions. Cognitive Dimensions provides a vocabulary for discussing and an-
alyzing tradeoffs, but it does not provide ground truth regarding how usable particular approaches
will be for people. In order to narrow the space of possible language designs, we conducted semi-
structured interviews with eight software engineers who were working on large software projects
at several organizations. Our participants had an average of 15 years of experience, with a mini-
mum of 7 years, and had worked on projects with millions of lines of code and hundreds of people.

In order to both obtain unbiased data on problems with mutability in general as well as to obtain
feedback on concrete language designs, we carefully ordered the interview questions. First we
asked general questions, such as “How do you make sure that state in running programs remains
valid?” We got wide-ranging answers, including ones such as “We’ve essentially done away with
mutability to avoid security and concurrency problems” as well as recommendations for regular
use of testing and assertions. Afterward, we asked about existing language features, such as const
and final and their use. Then we asked about specific related areas, including concurrency and
security. Finally, we asked about our own language design ideas, including immutable classes. The
full set of interview questions is included in a previous article [28].

Our interview participants said that bugs in which state changes when it is not supposed to
are frequent. They also described how the language features they had available did not provide
guarantees that were sufficient for their purposes. For example, when reusing existing code, par-
ticipants could not typically tell whether the code was thread-safe, so they had to assume that it
was not. If a component came with an appropriate compiler-checked immutability specification,
then they could be confident of safety, but languages did not provide such a feature. We concluded
that transitive immutability provided the strong safety properties that our interview participants
requested: a transitively immutable object can be shared safely among threads without locks.

ACM Transactions on Computer-Human Interaction, Vol. 28, No. 4, Article 28. Publication date: July 2021.

PLIERS: A User-Centered Process for Programming Language Design 28:17

An interesting observation that came out of the interview studies is that typically, for a given
class, either all instances are mutable or all instances are immutable. In contrast, some prior sys-
tems, such as IGJ [104], supported immutability at the object level of granularity (object immutabil-
ity). We evaluated an initial prototype, IGJ-T, that extended IG]J with transitivity [27]. We found
that participants had great difficulty managing the complexity, which was in part because IGJ’s
syntax focused on object immutability, not class immutability. We reasoned that if we designed
our system to support class immutability only, our system would be simpler and therefore likely
easier to use without sacrificing much expressiveness. This motivated our new tool, Glacier, which
was centered around transitive class immutability.

Figure 3 shows several design alternatives. #1 shows how in IG], immutability is a property of
references, not of classes. Compared with IGJ, IGJ-T (#2) also enforces that fields of classes for
which there are immutable instances must have all-immutable fields (enforcing transitivity). In
Glacier (#3), immutability is a property of classes, not of references. Variant #4 explores a possible
extension of Glacier, in which the compiler can automatically derive immutable versions of muta-
ble classes. We elected not to pursue that approach, since our interview had indicated that most
classes are used either in an immutable or a mutable way, but not both.

Triangulation [80], in which a designer combines results of multiple qualitative studies, was a
key aspect of the design process. We sought designs that resembled the approaches participants
proposed via natural programming and which also enabled participants to complete programming
tasks as effectively as possible in our task-based studies. We also leveraged real-world evidence of
security vulnerabilities to motivate our safety objectives. At the same time, we were guided by the
theory of programming languages, which we used to ensure that our language would provide the
guarantees that our design intended to achieve.

4.2 Summative Studies

In addition to doing two case studies to evaluate expressiveness [26], we conducted a lab study
to answer two research questions relating to our comparison question in Section 1 (“How can we
compare multiple language designs to see which are more effective for users?”):

(1) Can participants express immutability more successfully in Glacier than with Java’s final
keyword?

(2) Without Glacier (using only standard Java), are programmers likely to accidentally insert
the kinds of bugs that Glacier detects?

We described the study in more detail in an earlier article [24], which we summarize here.
We recruited 20 Java programmers. We randomly assigned participants to use either Glacier or
final, and we gave participants a tutorial in their given tool (two pages for Glacier, three pages
for final). In addition, we gave the final participants a page from Effective Java [13] explaining
how to safely enforce immutability with final. Then, to address the first question, we asked them
to change one class in each of two small projects (Person and Accounts) so that those classes
were immutable. None of the participants in the final condition were able to do their task suc-
cessfully because it was too easy to forget to do one of the changes required, such as copying
mutable inputs to constructors. Of the 20 Glacier tasks attempted, participants completed 19 cor-
rectly. The difference between success rates across conditions is significant in each task (Person:
p ~ 1.08 X 1075; Accounts: p ~ 1.2 x 10~*, Fisher’s exact test). Among users who said they were
done with both tasks, final users completed both annotation tasks in an average of 14 minutes.
The average Glacier user completed the task in 11 minutes. A Wilcoxon rank sum test comparing
the sum of completion times for Person and Accounts across conditions gives p ~ 0.072 with an
effect size r ~ 0.40. Although p > 0.05 is generally interpreted as “not significant,” we observe

ACM Transactions on Computer-Human Interaction, Vol. 28, No. 4, Article 28. Publication date: July 2021.

28:18 M. Coblenz et al.

1: IGJ. Immutability is a property of references. Immutability is not transitive.

public class Game {
// No need for 'outcome' to be immutable, since immutability is not transitive.
private Outcome outcome;

1
2
3
4
5 // Constructor returns a reference to an immutable object.
6 @Immutable Game (Outcome outcome) {

7 this.outcome = outcome;
8

9 }
2:

IGJ-T. Immutability is a property of references. Immutability is transitive.

1 public class Game {

2 // @Immutable is required when declaring 'outcome' because there is
3 // at least one constructor that returns an @Immutable reference.

4 private @Immutable Outcome outcome;

5

6 // Constructor returns a reference to an immutable object.

7 @Immutable Game (@Immutable Outcome outcome) {

8 this.outcome = outcome;

9 }

10 }

3: Glacier. Immutability is a property of classes. Immutability is transitive.

1 @Immutable public class Game {

2 private Outcome outcome; // OK because Outcome class was declared @Immutable
3

4 // Every instance of Game is immutable, so no need to specify immutability.
5 Game (Outcome outcome) {

6 this.outcome = outcome;

7 }

8 1

4: An variant of Glacier, in which the compiler can synthesize immutable subsets of
mutable classes.

1 // Assume Outcome is mutable, but the compiler can synthesize an

2 // immutable version by leaving out the mutating methods

3 @Immutable public class Game {

4 Outcome outcome; // error: Outcome is mutable

5 @Immutable private Outcome immutOutcome; // OK: use immutable subset
6

7

8

9

Game (Outcome outcome) {

// Assignment is always permitted in the constructor

this.outcome = outcome;
10 }
11
12 void test () {
13 this.immutOutcome.setOutcome (WON); // compile error: no such method
14 this.outcome = ... // compile error because Game is @Immutable
15 }
16}

Fig. 3. Alternatives we considered for immutability systems.

ACM Transactions on Computer-Human Interaction, Vol. 28, No. 4, Article 28. Publication date: July 2021.

PLIERS: A User-Centered Process for Programming Language Design 28:19

Table 2. Summary of Summative Study Results for Glacier

Final Glacier

Correctly enforced immutability in Person 0/10 10/10
Correctly enforced immutability in Accounts 0/10 9/10
Average time for enforcing immutability across both tasks 14 min. 11 min.
FileRequest.execute()
Tasks without security vulnerabilities 4/8 7/7
Average time spent (among participants who finished) 14 min. 14 min.
HashBucket.put()
Tasks without bugs 3/10 7/7
Average time spent (among participants who finished) 18 min. 14 min.

the limited size of this study and hypothesize that a larger study would likely have resulted in a
smaller p-value.

To address the second question, we asked our participants to do two programming tasks
(FileRequest.execute and HashBucket.put) on two small immutable classes. The first task
replicated the Java getSigners () bug, in which an accessor might unsafely return a reference to
a mutable structure (which the caller might then mutate) [61]. The second task was adapted from
bug #1297 in the BaseX open source project [42]. We asked participants to finish implementing an
immutable hash map; although inserting a key/value pair should create a new map, participants
might erroneously mutate existing fields in place. Although we did not verbally tell them that the
classes were immutable, the classes were adapted from real-world code, and the participants had
just completed the tasks above pertaining to immutability. In the Glacier condition, each task was
completed successfully by seven participants; of course, no one accidentally mutated immutable
state because Glacier disallowed it. In the final condition, however, four of eight participants
who finished the first task completed it successfully, and only three of ten participants who fin-
ished the second task completed it successfully. Fisher’s exact test indicates these differences are
significant at p ~ 0.077 for FileRequest.execute and p ~ 0.0098 for HashBucket.put. These
results are summarized in Table 2.

These results seems surprising: although we tried to design the experiment to be as unbiased
as possible, the programming tasks were actually biased toward the control condition (final) in
that participants had just been trained to consider immutability. One would expect, then, that in
a real-world scenario, programmers might perform even more poorly. The success of this study
teaches us some lessons about study design:

Errors are frequent: Programming is so difficult that participants are likely to make errors very
frequently, consistent with the variance challenge. Some of these errors will be ones that the
experiment designer was hoping to observe, but many of them will be irrelevant. To mitigate
this, ensure that participants are given enough time to correct their mistakes and actually
finish tasks. Any task can be made difficult enough that participants will not finish it within
a given amount of time, so it is imperative to use pilot studies to identify an appropriate
amount of time to allocate. A corollary, however, is that it is not difficult to run a study in
which at least some participants make a particular error of interest.

Training may have limited effectiveness: In the Glacier study, participants in the final con-
dition were unable to correctly follow the advice we gave them on using final, despite
having both documentation and a relevant page from a textbook. This is an example of the

ACM Transactions on Computer-Human Interaction, Vol. 28, No. 4, Article 28. Publication date: July 2021.

28:20 M. Coblenz et al.

training challenge. Likewise, in the second part of the study, they frequently failed to identify
that the class they were working on was immutable, despite having just spent time studying
immutability. This leads to two lessons. First, attempts to change programmer behavior with
only training materials, without actually modifying the tools programmers use, may have
limited effectiveness. Second, in retrospect, considering our observations teaching Obsidian
(Section 5.2), the training might have been more effective if we had required participants to
do exercises with the new knowledge rather than assuming that they could read documen-
tation and follow directions.

Bias toward control condition may be acceptable: Study designs may risk biasing the evalu-
ation results. For example, we might have seen even more errors in the second part of the
experiment if we had not previously trained the participants in immutability, but that would
have required either getting a second set of participants or changing the task order. If we had
conducted the programming tasks first, then those tasks could have served to bias the other
set of tasks. Because recruiting participants is challenging (recruitment challenge), we opted
to do both the immutability-specification and the immutable-class-programming tasks with
one set of participants. That is, because of the large effect size we expected, we could af-
ford to potentially bias the study toward the control condition; this is better than introducing
threats to validity or making the study harder to execute.

Replication materials for the study can be found online [25].

5 PLIERS FOR OBSIDIAN

Obsidian was a much larger language design project than Glacier was, so there were many more
design questions to address. We started with an analysis of proposals for blockchain applications
and by studying bugs that had significant implications on existing blockchain platforms. We iden-
tified hypotheses for technical approaches that would provide safety properties to address the key
problems we identified. Then, we conducted formative studies to explore whether we could design
a language to be as usable as possible while still achieving our safety goals. The first subsection
focuses on how those formative studies informed the language design. In the next subsections
(Sections 5.2 and 5.3), we show how we used summative studies to assess to what extent we had
achieved our usability objectives.

5.1 Formative Studies

In formative studies, we gave participants traditional programming tasks as well as natural pro-
gramming tasks. In various studies, we used our adapted Wizard of Oz method, back-ported our de-
sign to the context of Java to isolate our research questions, provided participants with tasks span-
ning a range of difficulties, and divided larger tasks into subtasks. The formative studies spanned
a variety of central design questions, which corresponded to usability risks we identified in our
early designs:

—How should lexical scoping work for states? (Section 5.1.1)

—How should the language help programmers manage fields that enter and exit scope when
state changes? (Section 5.1.2)

—How could programmers use permissions to express different kinds of references to objects?
(Section 5.1.3)

—How should the language represent the relationship between typestate and permissions?
(Section 5.1.4)

ACM Transactions on Computer-Human Interaction, Vol. 28, No. 4, Article 28. Publication date: July 2021.

PLIERS: A User-Centered Process for Programming Language Design 28:21

Table 3. Summary of All Obsidian User Studies Described in this Article and their Participants

Topic Participants Methods

Basic design of typestate (Section 5.1.1) P1-P12 Natural programming

Fields in states (Section 5.1.2) P20, P66-P68 Natural programming;
Usability study

Permissions (Section 5.1.3) P14-P19 Natural programming;
Usability study

Typestate and ownership approaches P21-P25 Usability study

(Section 5.1.4)

Summative usability study pilots P26-P34 Usability study

Summative usability study (Section 5.2) P35-P40 Usability study

RCT pilots P41-P44 RCT

RCT (Section 5.3) P45-P65 RCT

Participant P13 was in pilot studies. Participant numbering is consistent with prior papers, e.g., [23].

In this section, we describe studies that helped us identify a suitable design and iterate on our
initial design ideas for Obsidian. For each study, we identify our research questions, methodology,
and results. We started by assuming that we would use typestate to achieve the desired safety
guarantees but that expressing typestate in a usable way would require substantial iteration with
users. The latter assumption was based on past work on typestate systems, such as Plural [10]
and Plaid [93], which researchers had found were difficult for users to use. All of the studies were
approved by our IRB. Because we needed skilled programmers, we recruited from appropriate
academic programs, by posting flyers, and by contacting our acquaintances. Except where noted
below, we paid participants $10/hour for participating. Materials used in the studies can be found
in the replication package [20].

Although Figure 1 uses the final version of the language, because the formative studies were
done earlier, they use code from earlier versions of the language. In this way, the reader can see
how we changed the language as a result of the user studies. For example, Figure 6 shows different
approaches that we considered using for declaring local variables.

Table 3 summarizes all the Obsidian user studies.

5.1.1 Basic Design of Typestate. In order to minimize assumptions regarding how Obsidian
should best represent typestate, we conducted a natural programming study, which we described
in an earlier paper [4]. We focus here on two of the research questions we had:

—Are states a natural way of approaching the challenges that arise in blockchain programming?
—Which (if any) of our proposed ways of presenting states and state transitions is most under-
standable and usable by programmers?

These are examples of the naturalness research question in Section 1 (“How can we obtain in-
sights as to what language designs will be natural for programmers?”). We gave participants a
description of a voter registration system, in which we would investigate to what extent state
machines were a natural way to write smart contracts. The first task used a natural program-
ming methodology: we asked participants to implement the system using pseudocode using any
language features they wanted to solve the problem. Next, we gave participants a state diagram
that modeled the system, and asked them to modify their pseudocode to include states and state
transitions. In the third task, we gave participants a two-page Obsidian tutorial that described state

ACM Transactions on Computer-Human Interaction, Vol. 28, No. 4, Article 28. Publication date: July 2021.

28:22 M. Coblenz et al.

1 contract C { 1 contract C {
2 state Start { 2 state Start {
3 transaction t(int x) { 3 transaction t(int x) {
4 ->S1{x1 = x}; 4 ->S1({x1 = x})
5 toS2(); 5 if in S1 {
6 } 6 ->S2({x2 = x1})
7 } 7 }
8 8 if in S2 {
9 state S1 { 9
10 int x1; 10 }
11 transaction toS2() { 11 }
12 ->S52{x2 = x1}; 12 }
13 } 13
14 } 14 state S1 {
15 15 int x1;
16 state S2 { 16 }
17 int x2; 17
18 } 18 state S2 {
19 } 19 int x2;

20 }

21}
(a) Option 1. The dynamic state (not the lex- (b) Option 3. Fields can only be referenced
ical structure) governs which transactions by code that lexically is in the state in which
may be called. For example, line 5 calls those fields are defined. An if in block can
toS2() even though t is lexically in the be used to enclose code that must reference
Start state and t0S2() is defined in S1. fields of other states, as in line 6.

Fig. 4. Two of the options given to participants in the basic design study.

blocks. However, the tutorial omitted any description of how state transitions should be written;
we gave participants an Obsidian program that implemented the voter registration system but
which omitted state transitions. We asked participants to fill in the missing transitions by invent-
ing their own syntax to do so. In the fourth task, we gave participants three options for the syntax
and semantics of state transitions and asked them to use each option once in an example program
we provided. The first and third options are explained in Figure 4. An additional option entailed
using constructors for states (rather than only for whole contracts). Each state’s constructor would
be invoked on transitions to that state. This included a rule that no code could follow a state tran-
sition; the expectation was that any code that needed to run after a transition would need to be in
the new state’s constructor.

Finally, in a fifth task, we asked participants to select one of the three options and use it to
complete the voter registration program they started earlier.

We recruited a convenience sample of seven participants, most of whom were computer science
undergraduates. Each participant was given a description of a program to implement and one hour
to complete the implementation. We paid participants $10/hour for their time.

In the first task, only two participants invented syntax denoting states and state transitions; the
rest used a conventional approach, such as an enumerated type. However, many of the approaches
the remaining five participants used were unsafe, helping to justify using typestate to improve
safety. For example, creating separate lists for unregistered and unregistered citizens results in the
possibility of citizens appearing on both lists.

ACM Transactions on Computer-Human Interaction, Vol. 28, No. 4, Article 28. Publication date: July 2021.

PLIERS: A User-Centered Process for Programming Language Design 28:23

We asked six of the participants to modify their pseudocode to use states. Two created explicit
state blocks with states and variables nested inside. The remaining four either maintained global
state for each citizen, or gave each citizen a state field, or created empty, immutable states at
the top of the program. Although the instructions forbid allowing duplicate registrations, several
participants did not check for existing registrations before processing applications.

Regarding the syntactic choices we offered in the third task, three participants preferred state
constructors (part (a) in Figure 4), one preferred nested state blocks (part (b) in Figure 4), and the
remaining three either did not indicate a preference or did not complete this task.

Although most of this study focused on participant behavior, we took the opportunity to also
ask participants for their syntactic preferences. Five participants preferred a syntax where all the
actions of a state must be lexically encapsulated in that state, as in the first alternative in Figure 5.
Likewise, P4 felt it should not be permitted to call transactions from one state while lexically in
another state: “I'm calling S1’s transaction from code for Start”

This preference led to a conflict in the design. We found through work with example programs
after the study that Obsidian needed to support transactions that could be executed in several
different states. For example, in the third example of Figure 5, line 5 may reference balance, even
though line 5 is lexically enclosed in the Empty state, in which balance is not in scope. This
represents a conflict between a syntactic preference and an expressivity concern.

Another difficulty with the constructor-based approach is that states might be entered for a
variety of different reasons, requiring different code to run after the transitions. This makes the
constructor-based approach likely too inflexible. These challenges underscore the importance of
sufficient example-based work before conducting user studies; it is easy to design a study that
provides plausible options that turn out to not support critical use cases.

This problem led us to run the study described in Section 5.1.2. As a result of that study, we
addressed the conflict by requiring that transactions are lexically outside of state declarations,
like the second example in Figure 5. Future IDE tools could show all transactions that are pos-
sible for an object in a given state, even though their declarations are lexically outside that state’s
declaration.

5.1.2 Fields in States. States in contracts can have different sets of fields, so transitioning can
cause some fields to exit scope and others to enter scope. For example, in Figure 1, the Full state
has the inventory field, but the Empty state has no fields. This study used natural programming
and code understanding methods to investigate how users specify cleanup of old fields and initial-
ization of new fields when invoking state transitions.

We recruited participants as long as new participants provided significantly different data than
we had already obtained. This led to recruiting four participants. All were Ph.D. students studying
software engineering. They had an average of seven years of programming experience (ranging
from 3 to 15 years) and an average of 1.5 years of Java experience. Two identified as male, and
two identified as female. We did not limit their time in completing the tasks. The mean time to
completion was of 1 hour, 27 minutes. The times per user are shown in Table 4. Due to a miscom-
munication between co-authors, the participant identifiers are not contiguous, but the experiments
occurred sequentially over about a month.

In Part 1, we gave participants a state transition diagram for a Wallet object, which could
hold a license and money, and which had four states corresponding to the possible combinations
of contents. Participants were also given code partially implementing the Wallet, with several
TODO comments asking participants to invent code to add money to the Wallet, remove money
from the Wallet, and so on. Participants were told that the money and license should be thought
of as assets, so they could not be duplicated, used more than once, or lost. The code they were given

ACM Transactions on Computer-Human Interaction, Vol. 28, No. 4, Article 28. Publication date: July 2021.

28:24 M. Coblenz et al.

Transaction lexically nested inside state declaration:

1 contract Wallet {

2 state Empty;

3 state Full {

4 int balance;

5

6 // spend() is nested inside the declaration of the state it belongs to.
7 transaction spend(Wallet@Full this) {
8 // use 'balance'...

9 }

10 }

1}

Transaction lexically outside state declaration:
contract Wallet {

state Empty;

state Full {

int balance;

// spend() is not nested in Full, even though it can only be called in Full state
transaction spend(Wallet@Full this) {

1

2

3

4

5 }
6

7

8 // use 'balance'...
9

10 }

Transitions when inside a state could be confusing;:

1 contract Wallet {

2 state Empty {

3 transaction fill(int amount) {
4 ->Full(balance = amount);

5 // Now balance should be in scope, since new state is Full
6 }

7 }

8

9 state Full {

10 int balance;

11 //

12 }
13 }

Fig. 5. Although participants preferred to have transactions nested inside state declarations (the first alter-
native), this desire conflicted with the need for transactions only reference fields that were in lexical scope.

was in a language similar to Obsidian but which used some keywords that would be more familiar
to a Java programmer, such as class instead of contract. As such, this was a staged natural
programming study, since we progressively gave participants more detail about the language we
were designing.

All four participants prepared assets for a state transition before making the state transition (cor-
responding to option (2) in Part 2 below, S::x = al; ->S). Two participants felt they needed
to write code to handle failures during the asset preparation stage, which might lead to an
improperly initialized state upon transition. One of them suggested a try-catch type wrapper for
the asset preparation and transition phases.

ACM Transactions on Computer-Human Interaction, Vol. 28, No. 4, Article 28. Publication date: July 2021.

PLIERS: A User-Centered Process for Programming Language Design 28:25

Table 4. Times Spent by the
Four Participants in the
Fields in States Study

Participant Time

P20 54m

P66 1h39m
P67 1h35m
P68 1h4lm

In Parts 2 through 4 of the study, participants were given several options. Then they were asked
to implement each of the options within a given partially-implemented transaction. Finally, they
were asked for their preferences.

Part 2 compared approaches for initializing fields in states during transitions. Options were:

(1) Assets are assigned to fields in the transition, e.g., ->S(x = al) assigns the value of al to
field x of state S.

(2) Assets are assigned to fields before the transition, e.g., S::x = al; ->S.

(3) Assets are assigned to fields before the transition, but the fields are in local scope even though
the state has not changed yet, e.g., x = al; ->S.

(4) Assets are assigned to fields after the transition, e.g., ->S; x = al.

The participants successfully used all the approaches, but most of the participants preferred
assigning assets to fields before the transition with destination state scoping (option 2). Before
the study, Obsidian supported only atomic assignment (option 1, shown in Figure 1 on line
22). The results of these two parts motivated a language change: Obsidian now also supports
option 2.

Part 3 presented two options for handling assets when transitioning from a state with an asset
to a state without it:

(1) The transition evaluates to a collection containing the old assets, e.g., X = ->S indicates
that x is assigned the leftover assets after the transition to state S. If the current state is
unknown statically, the contents of the collection are determined dynamically.

(2) The transition evaluates to a tuple, e.g., (x = al) = ->S indicates that x will be assigned
the asset al which is not present in state S.

There was consistent confusion about which leftover assets are assigned to option 1’s collection
after a transition. All participants understood the need for both options in certain cases, but would
choose the tuple-like collection for more control and explicitness when the use of either approach is
acceptable. We would like to implement this approach in the future but so far have not prioritized
it, since the existing approach (described in Part 4, option 1), which requires that ownership of
assets be surrendered before transitioning, has been effective for participants.

Part 4 focused on releasing assets owned by state fields when transitioning to states in which
those fields do not exist. In contrast to part 3, this approach added the option of releasing assets
before the transition. The choices were:

(1) Assets must be released before the transition, e.g., release(al); ->S.

(2) The transition evaluates to a tuple of assets that are no longer owned, e.g., al = ->S. The
tuple is necessary since there may be several asset-owning fields going out of scope, so there
would be one element per field.

ACM Transactions on Computer-Human Interaction, Vol. 28, No. 4, Article 28. Publication date: July 2021.

28:26 M. Coblenz et al.

All the participants understood the options and implemented them without mistakes. Imple-
menting using option 2 (evaluating to a tuple) enables both approaches, so participants were asked
to indicate scenarios where one option would be preferred over the other. The participants con-
sistently indicated that assets should be released before a transition if they are no longer needed,;
otherwise, they should evaluate to a tuple. This helped us prioritize our features, since releasing
assets before the transition seemed to suffice.

5.1.3 Permissions: a Qualitative Study. Soundly enforcing typestate requires knowledge about
all references to an object, which is afforded by a permission system. [9]. Permission systems allow
the programmer to express what a particular reference can be used for (and therefore also what it
cannot be used for). Is there a permission system that users can understand and use effectively (a
question of naturalness)? If so, what can we learn from users about how to design it (a question of
how to iterate on designs)? In this work, we conducted the first studies (of which we are aware)
in which people other than the designers of the system were asked to use a permission system
to restrict references in a programming language. We found that our initial system design was
surprisingly difficult to use, and iterated the design until it was more successful.

In order to study permissions while mitigating the interdependency of features, training, and re-
cruiting challenges, we extracted the permission system from Obsidian and re-cast it in Java as
a set of annotations. We conducted a Wizard of Oz study where participants received documen-
tation on a Java extension and the experimenter gave simulated compiler error messages. This
approach minimized training time for participants, minimized implementation cost for ourselves,
and allowed us to isolate this design decision from many others that would have otherwise dis-
tinguished the language from Java. We found that focusing our participants on narrowly-defined
tasks enabled the experimenter to quickly produce plausible error messages. Typically, usability
studies focus on relatively narrowly-defined design questions, making narrowly-defined tasks ap-
propriate anyway. This required that the experimenter be very familiar with the details of the
language; in other situations, making a checklist of errors to look for in advance might help make
this process more reliable if the analysis is complex, the experimenter is not expert, or the task is
wide-ranging.

At this point in the development of Obsidian, we assumed that it would be best to separate
the notions of permissions and typestate; this approach was reflected in the study materials but
may surprise a reader who has studied Figure 1, which reflects the final Obsidian version, which
combines the two. The training materials explained the annotations: @Asset, which applied to
classes; and @Owned, @Shared (@Shared means there are no restrictions because the object has no
owner), and @ReadOnlyState (restricting state modification), all of which applied to references.

Our objective was not to obtain as much data as possible about the current design, but rather to
identify a forward path through the design process. Reliability of results depends on the fidelity of
the prototypes used; because this study was with a relatively low-fidelity prototype, we conducted
a relatively small number of trials to help us make key design decisions. As with the prior study,
we continued recruiting participants until most of the new data duplicated earlier data and we
had identified a concrete plan for continued language revision and evaluation. For this study, this
resulted in recruiting six participants (P14-P19). They had a mean of 6 years of programming
experience (ranging from 3 to 9 years), a mean of 1 year of professional experience, and a mean of
2 years of Java experience. All identified as male.

The study included five parts. Since our goal was to identify as many usability problems as
possible in each trial, we revised the design and instructions after each participant. This approach
(of changing the tasks between participants) is an accepted practice in usability studies in order to
obtain the most useful data from the study [33, 57]. The first three participants were given 1.5 hours

ACM Transactions on Computer-Human Interaction, Vol. 28, No. 4, Article 28. Publication date: July 2021.

PLIERS: A User-Centered Process for Programming Language Design 28:27

to do the first four parts; the last three were given 2 hours to fit in a fifth part of the study. An
experimenter was available to answer questions.

Part 1. To motivate the need for language features to prevent bugs, we gave participants a 163-
line Java medical records system and asked the first two participants to find a bug in which a
patient could refill the prescription more times than specified. The first participant did not find the
bug within 30 minutes; the second did so just as time expired. To conserve time, we gave the other
participants 5 minutes to inspect the code and then we explained the problem to them.

We conclude that at least some programmers who use traditional languages would have diffi-
culty detecting the kind of bug that Obsidian prevents. This provides further evidence that if users
use Obsidian, the compiler will help them detect bugs that otherwise might go undetected.

Part 2. We told participants we would prevent the previous bug by distinguishing between two
kinds of references. “Considering an object o: Kind #1: There is only one reference of kind #1 to o
at a time. Kind #2: There may be many references of kind #2 to o at a time.” We asked participants
to propose names for the two kinds of references. Note the careful language avoiding bias toward
specific vocabulary. Participants’ name suggestions included:

Kind #1: KeyReference, UniqueReference, Owned, Singleton reference, Resource handle,
@default

Kind #2: DuplicateReference, ForeignKeyReference, Borrowed, Flyweight pattern reference,
const pointer

The results were too inconsistent to justify an particular choice in the language; all the sugges-
tions were distinct, and some of them were not appropriate in context (unsound proposals chal-
lenge). Obsidian uses Owned, which is at least consistent with one suggestion, and Unowned.

Part 3. To evaluate the usability of ownership, we gave participants an ownership tutorial and
told them we had chosen [no annotation, @Read0Only] (first participant) or [@Owned, no annotation]
(later participants) as keywords. We asked them to modify the code from Part 1 to fix the bug. We
hoped participants would require that Prescriptions deposited in a Pharmacy be owned and
that the Pharmacy take ownership; thus, a deposited Prescription could not be deposited in
a second Pharmacy. Completion times ranged from 3 minutes to 40 minutes (variance challenge).
Two participants did not finish, one of whom we stopped after 38 minutes to prioritize other tasks.

We were surprised that many of the participants found this task very difficult. We expanded the
tutorial to include a practice section for later participants. In general, participants were not pre-
pared to use a type system to address a bug that they thought of in a dynamic way. For example,
P16 wrote if (@Owned prescription), attempting to indicate a dynamic check of ownership.
We asked participants who wanted to use dynamic approaches for enforcement to use the lan-
guage feature instead. P14 commented “T haven'’t seen...types that complex in an actual language
...enforced at compile time”

P17 had trouble guessing what the compiler could know, expecting an interprocedural analysis
(which would be non-modular). For example, in a case where an owned object was being con-
sumed twice, P17 expected the compiler to give an error on the second spend invocation. Instead,
because the second invocation was inside a helper method, the compiler reported the error on the
invocation to the helper method, which took an owned argument and invoked the second spend.

P17, P18, and P19 had difficulty determining which variables should be annotated @Owned. In
one case, a lookup method took an object to search for, but P17 specified that it should take an
owned reference. Then he was stuck after invoking it: “How can I get the annotation back?” But
this was impossible except via adding another method, since he had already given away ownership.
Likewise P17 was confused by whether accessors should return owned references. Mistakes could
be costly. For example, P19 unnecessarily annotated as @Owned a class that was contained in a

ACM Transactions on Computer-Human Interaction, Vol. 28, No. 4, Article 28. Publication date: July 2021.

28:28 M. Coblenz et al.

collection, which caused a problem iterating through the collection. He made the reference to the
current list element @Owned, which would require removing each item from the collection when
iterating over it in code that was not supposed to modify the container at all.

Parameter-passing and assignment were common points of confusion. P18 asked what happens
when passing an @Owned object to a method with an unowned formal parameter (ownership was
not passed in this case). P19 said, “when I [annotate this constructor type @wned], I'm not sure
if ’'m making a variable owned or I'm transferring ownership.” P17 was surprised that assign-
ment from an owned reference to an unowned-type variable did not transfer ownership. We later
addressed this confusion by making assignment always transfer ownership; participants in later
studies were generally not confused about which assignments transfer ownership.

From this portion of the study, we came to two general conclusions. First, the semantics of own-
ership needed to be as explicit and as simple as possible. This likely generalizes to many different
kinds of complex language constructs: implicit behavior, although sometimes convenient for ex-
perts, can be baffling to novices. When the behavior can be made explicit without making the
language inconvenient for experts, that should be done. Second, language design decisions that
have structural implications (as is the case for ownership) require substantial high-level training;
we refined the training materials in future studies to give more explanation and examples.

Part 4 introduced the notion of assets. After a tutorial explaining the properties of assets, partic-
ipants were asked to invent code that could indicate a particular owned reference was intentionally
going out of scope. Two participants suggested @isown and free to abandon owned references;
the rest did not have time to answer or had no suggestions. We chose disown for Obsidian, since
free has additional memory management connotations that are not relevant here.

Part 5 introduced typestate, starting with the fourth participant. Participants read 2.5 pages on
typestate in Obsidian (as it existed then), including @ReadOnlyState, @Shared, and @Borrowed
(which was for temporary ownership transfer in invocations). Ownership was the default, so no
@0wned was needed. The tutorial also explained available inandends in, which at the time
specified state assumptions and guarantees for methods (before we changed to using this parame-
ters instead, e.g., as on lines 19 and 27 of Figure 1). Then, they were asked to annotate uses of Bond
in a 212-line Java program implementing a financial market. They were told to use ownership and
state specifications whenever possible.

Consistent with Part 3, some participants were more comfortable with a dynamic perspective
on ownership rather than a static one. P18 felt that ends 1in declarations were redundant with the
transition code already in the method implementations, but these declarations allow separation of
interface and implementation and modular checking. P19 wanted to use borrowing to represent
the notion that the BondMarket owns a Bond, but an Investor borrows it for a while. In fact,
borrowing was only appropriate for the duration of a method invocation. We later changed the
design of the formal parameter syntax to remove the need for @Borrowed; now, if no ownership
change is specified (via the » operator), ownership remains unchanged.

P19 required significant prompting by the experimenter to make maximum use of typestate.
First, P19 added annotations on methods but not on any variables. After prompting, he added
dynamic checks in one place but required prompting to add static typestate specifications. This
suggests that tools may be needed to help users obtain the most benefits from the language. On
the other hand, P18 specified @Asset on Bond without being asked to do so, explaining “because
it’s something important and I don’t want to get it out of scope...”

Overall, understanding the limitations of the type system and compiler may be an obstacle for
some people. Users will need training to reason about what typestate can do, but the observations
above motivated language changes that simplified the design without lowering the expressivity or
safety. Tools could mitigate the limitations of traditional type systems by providing sophisticated

ACM Transactions on Computer-Human Interaction, Vol. 28, No. 4, Article 28. Publication date: July 2021.

PLIERS: A User-Centered Process for Programming Language Design 28:29

static analyses rather than taking a traditional type checking approach (as Obsidian does), and by
providing detailed, explanatory errors.

5.1.4 Comparing Typestate and Ownership Approaches. We were interested in evaluating a new
approach we invented, which was motivated by the confusions we observed in the study described
in the previous section (in part a question of naturalness and in part a challenge of training). We
invented a new approach: fuse the notions of ownership and typestate in order to simplify the
type system, and the next study refined this design. This design has the benefit of eliminating
Shared references that also specify typestate, which would then have to be disallowed to preserve
soundness. Thus, the type Bond@S is always implicitly an owned reference for any state S, and
users can write any permission instead of S, as in Bond@Unowned.

We were also interested in another usability concern. Consider Approach 1in Figure 6. A reader
of line 1 might expect that the type of bond would always be Bond@0f fered. In fact, after line 2,
the type is Bond@Sold due to the call to buy. A fundamental aspect of Obsidian is that ownership
can change, so if a variable declaration includes any ownership information, the variable’s own-
ership status may later be inconsistent with its declaration. Our concern relates to the theory of
beacons [102], which suggests that some lines of code are much more salient in code understanding
tasks than others.

We initially invented two possible approaches to address this problem. One idea involved incor-
porating types into variable names, shown in Approach 2. The annotations pertain to the current
type rather than the new type. The reader would have to look at only the most recent operation to
infer the new type of a variable rather than having to potentially read the whole sequence since
the declaration.

Approach 3 represents another idea: adding static assertions. Line 3 shows a static assertion that
bond references an object in state Sold, which serves as documentation. Unlike traditional asser-
tions, however, the compiler checks correctness. The intent is to make it easier for programmers
to determine the types of variables.

We conducted studies with participants in the first three conditions. Inspired by observations of
those participants, we invented approach 4. This approach is like approach 3 except that it removes
state specifications from local variable declarations. The removal was not part of the original design
but was inspired by early results of this study.

5.1.5 Participants. We required that participants be familiar with Java and we administered
a simple Java pre-test. We recruited five students (P21-P25). Based on self-reports, they had an
average of about 4 years of Java experience (ranging from 1 to 10 years) and an average of 1 year
of professional (paid) software development experience (ranging from 0 to 3 years).

5.1.6 Procedure. Participants spent between 1 and 1.5 hours on the study. We used a
Qualtrics [75] survey to ask participants a series of questions regarding Obsidian programs, but
the study took place in a lab and an experimenter was available to answer questions. The sur-
vey both taught aspects of the language and provided an opportunity for assessment. Most of
the questions were typical code understanding questions, which gave snippets of code and asked
whether the compiler would give an error or what the code meant. Rather than assigning partic-
ipants to conditions randomly and ensuring equal numbers of participants in each condition, we
conducted each trial according to the particular questions we wanted to obtain insight on at that
time. We assigned P22 to approach 1, P21 to approach 2, P23 and P24 to approach 3, and P25 to
approach 4. Figure 7 shows an example survey question that asks about ownership transfer.

5.1.7 Results and Discussion. P22, who was given approach 1 (with permissions and states spec-
ified only in declarations), tried to guess the compiler’s behavior, saying things like “If the compiler

ACM Transactions on Computer-Human Interaction, Vol. 28, No. 4, Article 28. Publication date: July 2021.

28:30 M. Coblenz et al.

Approach 1: traditional declarations

1 Bond@Offered bond = new Bond();
2 bond.buy(...);

Approach 2: types in variable names

1 Bond bond@0ffered = new Bond();
2 bond@Offered.buy(...);

Approach 3: static assertions

1 Bond@Offered bond = new Bond();
2 bond.buy(...);
3 [bond@Sold];

Approach 4: no states in local variable declarations

1 Bond bond = new Bond();
2 bond.buy(...);
3 [bond@Sold];

Fig. 6. Variable declaration approaches.

Q14.6.

resource class Money {..}

resource class Bank {
Money@Owned myMoney;

void depositMoney (Money@Owned >> Unowned deposit) { .. }
Money@Owned withdrawMoney () {..} // Withdraws all money
}

class Test {
Bank b;

void putMoneyInBank (Money@Owned >> Unowned m) {
// At the beginning, m owns an instance of Money.
Money g = m; [m @ Unowned] // Location (A)

b.depositMoney(q); [g @ Unowned] // Location (B)
// Location (C)
b.depositMoney (b.withdrawMoney()) // Location (D)

}
}
At location (A), w hat happens?

« Ownership is transferred fromm to q
C Compiler error: g needs to acquire ownership, but this line does not transfer it
C This line is correct by itself, but will cause an error at Location (B) because

g is not actually owned

(" Something else (explain what) | |

Fig. 7. An example question assessing understanding of ownership transfer. The correct answer is selected,
since assignment transfers ownership.

was smart...” For example, P22 expected that the language would infer an implicit @ ff in the
declaration LightSwitch sl = new LightSwitch(). P22 also expected that although
changes of state were permitted via transactions, state-mismatching assignment to variables
would be forbidden, even though approach 1 assumes that states can be inconsistent with type

ACM Transactions on Computer-Human Interaction, Vol. 28, No. 4, Article 28. Publication date: July 2021.

PLIERS: A User-Centered Process for Programming Language Design 28:31

declarations. This approach would be inconsistent and P22’s confusion suggests that the type-
declaration approach is problematic.

Including types in variables names seemed to be confusing as well. P21 expected that ownership
was not passed into method calls even when an owned reference was passed. P21 was also surprised
that no ownership annotation meant that there was no ownership, instead expecting this to mean
that ownership was unknown.

Participants in condition 3 seemed to do much better. For example, although the materials did
not use the word assertion, P23 observed that the annotations were assertions. P23 liked the system,
commenting “Perfect, I like this, this is very nice. I wish Java had this; it would have saved me a lot
of bugs” As we obtained additional confidence in the value of approach #3, we added additional
material. For P24, we changed assertions to use @ rather than the initial » so that we could use »
to specify type changes in transaction parameters. With P25, we used ? to indicate lack of static
state knowledge. We later simplified the system because this approach was ambiguous, leaving
only notations Owned, Unowned, Shared, and unions of specific states (separated with |).

P24 was confused because state specifications on local variables were redundant. For example,
in LightSwitch@Off s = new LightSwitch(), the @QOff portion is redundant because the
compiler already knows the state of the new object due to the constructor’s declaration. To resolve
this, we added approach 4, removing typestate and permission annotations from local variable
declarations; in contrast, permissions are always specified for fields and formal parameters. In
those cases, the annotations are important because they constrain types of variables at the end
and beginning of transactions. This approach eliminated those as sources of confusion for P25.
However, in one case, P25 was still confused by whether ownership was transferred after an owned
reference was passed to a transaction. We believe P25 did not read the type of the transaction that
was being invoked, in spite of a nearby annotation indicating the final permission. We concluded
that this difficulty would likely be addressable with a small amount of training, so we proceeded
with approach 4 in our final design.

In summary, this study motivated the removal of state specifications from local variable decla-
rations and provided initial evidence that static assertions are likely to be a convenient way for
programmers to specify states and permissions of local variables. We also obtained evidence that
with these other changes, static state assertions are understandable by current Java users with
little extra training.

5.1.8 Threats to Validity. The previously described formative studies share common threats to
validity, many of which correspond to the external validity challenge: our participants may not
be representative of the population of blockchain programmers; we had limited numbers of par-
ticipants in each trial; and our tasks may not reflect the reality of blockchain programming. We
believe, however, that the population of likely language users is more skilled than our participant
population, which mostly consisted of students, so if the students are successful in completing
tasks, that aspect of the result is likely to generalize. We did not seek to identify all possible usabil-
ity problems, but rather to identify the most common and severe ones associated with particular
design decisions so that we could try to address them. Because there were so many different de-
sign decisions, we focused on those for which we had prior evidence that there might be usability
problems.

5.2 First Usability Study of Obsidian

We finished a complete language design, including a formal proof that the design had the for-
mal safety properties we claimed it did [19]. We also completed implementation of the compiler
and runtime environment. In order to assess whether our changes to Obsidian had resulted in a

ACM Transactions on Computer-Human Interaction, Vol. 28, No. 4, Article 28. Publication date: July 2021.

28:32 M. Coblenz et al.

language in which programmers could be effective, we designed a summative usability study. As a
usability study, this was a qualitative study that sought to identify remaining usability barriers as
well as to find out whether participants could complete relevant programming tasks. In particular,
our prior studies had identified serious usability problems, so we wanted to know whether com-
pleting relevant programming tasks was feasible at all for our participants. This study preceded
an RCT comparing Obsidian to Solidity. That study is described in Section 5.3.

We gave six participants the complete Obsidian language, including its compiler, and asked them
to complete three programming tasks. We were interested in whether the participants would ex-
perience the same usability problems as the prior participants and whether there were sufficiently
serious usability problems left to prevent them from completing their tasks. All of the participants
were able to complete the first programming task, but some of the participants ran out of time
before completing the other tasks. The second task focused on ownership transfer, since our ear-
lier study found significant usability problems in our earlier prototype. All of the participants who
started the second task completed it, suggesting that we had successfully improved the usability
of ownership. The third task, which was more open-ended, presented additional challenges for
participants in part because it required reasoning about how the states of different objects related
to each other.

The design of the study was informed by several of our methodological contributions, and thus
also served to assess their value. Key aspects of the PLIERS process (described in more detail in
Section 6) that were helpful in designing the study included integrating training into the study
to allow recruiting participants who only had Java language experience, not Obsidian experience;
recruiting from a population that included many people with some professional experience; and
using multiple programming tasks, rather than one long one.

5.2.1 Participants. We solicited experienced Java programmers to take a short screening test
online, which took an average of about 9 minutes to complete. We accepted into the 3-hour study
only those who answered at least five of six basic Java questions correctly. The six questions con-
cerned: Java constructor syntax; the definition of encapsulation; whether changes to a list through
areference would be visible through another reference; whether methods in interfaces may include
bodies; whether abstract classes may be instantiated; and whether concrete subclasses of abstract
classes must implement methods that were abstract in the superclass. Of 18 completed surveys, 11
people met our screening criteria. We got six participants (P35-P40), whom we compensated with
$50 Amazon gift cards. The participants had an average of 9 years of programming experience, 2
years of professional experience, and 2 years of Java experience. One self-identified as female; the
rest identified as male. Figure 8 shows an example question. A copy of the screening instrument
is included in the replication package [20].

5.2.2 Procedure. The previous studies focused on particular aspects of the design, in many
cases by giving participants languages that were not precisely Obsidian. To evaluate Obsidian,
we conducted a usability evaluation. Because Obsidian provides stronger safety guarantees than
existing languages such as Solidity, and because of our prior experience showing that it would
be very challenging to develop a linear type system that would be usable at all, we focused the
study on examining whether people could effectively complete tasks. Our RCT, described in Sec-
tion 5.3, focused on whether people could complete tasks with fewer mistakes than in existing
languages.

The experimenter gave low-level guidance, such as explaining how to invoke the compiler. Also,
the experimenter provided assistance that simulated more mature tools. For example, when a
participant attempted to debug an error that was reported on line 38 by examining line 33, the

ACM Transactions on Computer-Human Interaction, Vol. 28, No. 4, Article 28. Publication date: July 2021.

PLIERS: A User-Centered Process for Programming Language Design 28:33

Which statements are true of interfaces in standard Java?

True False

Interfaces have no

field declarations

unless they are [) (@)
public static

final.

Methods in
interfaces are public [) O
by default.

Methods in

interfaces (except

for default [) (@)
methods) lack

bodies.

A class can
implement no more @) [)
than one interface.

Fig. 8. An example question from the screening test.

experimenter pointed out the discrepancy, since the IDE we provided did not highlight the appro-
priate line.

After completing the tutorial, which included seven programming exercises, we gave partici-
pants starter code for the three main tasks, described below. Although participants used the com-
piler, they were not given tests or a runtime environment, since the focus of our usability study
was the type system (recall that Obsidian is designed to detect as many bugs as possible at compile
time, since runtime detection may be too late to ensure safety). Although the first two tasks were
short in order to reduce variance, we allowed the third task to be more open-ended to see whether
participants would be able to complete a more challenging task.

The first task, Auction, simulated an English auction, in which bids are public, and the bid-
der who offers the highest price must pay that price for the item. We added the additional con-
straint that bids were required to come with Money so that bids could be guaranteed to be vi-
able (a bidder could not issue a bid and then fail to pay for the item). As a starter task, we
asked participants to finish implementing createBid, requiring them to invoke a constructor.
They also needed to finish implementing makeBid, which records a new bid from a client. In
makeBid, we were interested in whether they initially wrote code that accidentally lost the previ-
ous bid, which held the associated Money (before receiving a compiler error), indicating that Ob-
sidian’s typechecker had helped them avoid losing track of an asset. Figure 9 shows the Auction
task.

The second task, Prescription, corresponded to the medical records system in the Permissions
study section (Section 5.1.3); we were interested in whether our improvements enabled participants
to reason more effectively about the code than we had observed in the previous studies. We asked
participants to fill in the type signature for the consumeRefill and depositPrescription
transactions, which mirrored the previous study. We also asked them to complete the implemen-
tation of fTillPrescription.

The Casino task was more open-ended and included directions and requirements for what op-
erations should be supported, as well as low-level starter code, such as implementations of Money
and Bet. It asked participants to implement a Casino that takes bets on games. When games
are complete, the casino enables winners to collect their winnings. The requirements were as
follows:

ACM Transactions on Computer-Human Interaction, Vol. 28, No. 4, Article 28. Publication date: July 2021.

28:34 M. Coblenz et al.

1 main asset contract Auction {

2 Participant@Unowned seller;

3

4 state Open;

5 state BidsMade {

6 // the bidder who made the highest bid so far

7 Participant@Unowned maxBidder;

8 Money@Owned maxBid;

9 }

10 state Closed;

11

12

13

14 transaction bid (Auction@Shared this, Money@Owned >> Unowned money, Participant@Unowned bidder) {
15 if (this in Open) {

16 // Initialize destination state, and then transition to it.
17 BidsMade: :maxBidder = bidder;

18 BidsMade: :maxBid = money;

19 ->BidsMade;

20 }

21 else {

22 if (this in BidsMade) {

23 //if the new bid > current Bid

24 if (money.getAmt() > maxBid.getAmt()) {

25 //1. TODO: fill this in.

26 // Can call other transactions as needed.
27 maxBidder. receivePayment (maxBid) ;

28 maxBidder = bidder;

29 maxBid = money;

30 }

31 else {

32 //2. TODO: return money to the bidder, since the new bid was too low.
33 // Can call other transactions as needed.
34 bidder.receivePayment (money) ;

35 }

36 }

37 else {

38 revert("Can't bid on closed auctions.");

39 }

40 }

41 }

42}

Fig. 9. The Auction task. Code highlighted in yellow represents a correct solution; the rest was given
to participants as starter code. Line 27 transfers ownership of the object referenced by maxBid to the
receivePayment parameter. The new type of maxBid from then until line 29 is Money@Unowned. Line
29 re-establishes ownership in maxBid by transferring ownership from money to maxBid.

(1) IfaBettor predicts the outcome correctly, the Bettor gets twice the Money they put down.
For example, if Bettor b puts down 5 tokens on the correct outcome, they should receive
10 tokens after the Game is played.

(2) If the Bettor predicted incorrectly, the Casino keeps their tokens.

(3) Bets can only be made before the Game starts.

(4) Winnings can only be distributed after the Game is finished.

(5) Bettors must collect winnings themselves from the Casino after a Game by calling code,
which you need to write. Until bettors collect their winnings, the Casino keeps track of
them.

(6) A Bettor can have one active bet per game. If a Bettor bets more than once, their original
bet should be replaced by the new one and any previous bet should be refunded.

(7) A Bettor MUST put down tokens at the same time that they’re making a Bet.

(8) If the Casino does not have enough tokens available to pay out winnings, the invocation to
collect winnings can fail.

ACM Transactions on Computer-Human Interaction, Vol. 28, No. 4, Article 28. Publication date: July 2021.

PLIERS: A User-Centered Process for Programming Language Design 28:35

Table 5. Usability Test Results

Task completion times (hours:minutes)

Tutorial Auction Prescription Casino

P35 1:31 0:13 0:18 1:01
P36 2:12 0:28 N/A N/A
P37 1:03 0:33 0:46 0:36*
P38 2:18 0:46 N/A N/A
P39 1:14 0:22 0:27 0:51*
P40 1:11 0:12 0:22 0:58

*indicates insufficient time to finish the task. N/A indicates
insufficient time to start the task.

We also provided a sequence diagram to show participants what operations should be supported.
In this way, we conveyed the requirements without also specifying the transaction signatures,
since we wanted to see if the participants could infer those themselves.

We were primarily interested in participants’ abilities to reason about ownership and typestate
and to design architectures that could effectively use ownership.

5.2.3 Results and Discussion. Results for the tasks are summarized in Table 5. All the partici-
pants completed the first task (Auction). All the participants who spent less than two hours on the
tutorial completed the second task (Prescription). All the participants who started the third task
(Casino), which was substantially more complex than the other two, and had at least an hour avail-
able to work on it, finished it. Note that the two successful completion times for the third task were
longer than the times that the other participants had available to spend on it. With P38, to assess
to what extent the tutorial materials stood alone, the experimenter declined to answer Obsidian-
related and debugging-related questions. However, this made the first task perhaps unrealistically
difficult and lengthy, resulting in insufficient time for the other tasks.

In the Auction exercise, two of the six participants accidentally introduced a bug in which
an asset was lost: they overwrote maxBid, which held money. The compiler gave an error mes-
sage and they corrected their mistake, but if they had been using Solidity, its compiler would not
have caught the bug. After P36, we slightly simplified the Auction exercise by removing a sub-
task and refactoring to inline a TODO that had been put in a helper transaction. The above times
are adjusted to remove the extra time P35 and P36 spent on the removed task (1 and 8 minutes,
respectively).

Some participants seemed to think carefully about ownership and wrote the correct code quickly.
Others seemed to focus on satisfying the compiler, and their work took longer. For example, P38
got an error message after overwriting the owned maxBid reference, and “fixed” it with disown.
This choice may be a result of weaker programming skills and lack of help in the tutorial; P38 took
the longest on the tutorial, and was surprised to not be given a design diagram for the (< 300-line)
Auction starter code. We changed the tutorial to emphasize that disown should be used to throw
away assets.

In the Prescription task, as with other tasks, variance was large. For example, one reason for
P38’s long completion time was that P38 had used Python most recently and, despite the tutorial,
sometimes wrote Python-like syntax, which did not parse (one example took 4 minutes to fix). At
the time, we were hoping that participants would be able to complete the tasks entirely on their
own, but in retrospect, we may obtain more relevant results by carefully providing appropriate
help (which we provided to all the other participants).

ACM Transactions on Computer-Human Interaction, Vol. 28, No. 4, Article 28. Publication date: July 2021.

28:36 M. Coblenz et al.

We were interested in participants’ ability to reason effectively about ownership. All of the par-
ticipants who started Prescription were able to complete it. P37 encountered some difficulties due
to shortcomings in Obsidian’s support for dynamic state tests. Currently, Obsidian does not allow
dynamic state tests to be used as arbitrary Boolean expressions, e.g., 1f (x in S && e) wheree
is an arbitrary Boolean expression. Likewise, 1f (x not is Owned) is not supported (perhaps
this was inspired by Python’s is operator). In the latter case, P37 developed some intuition: “Own-
ership doesn’t feel like something I should be using in this way...” and restructured the code to
check if (maybeRecord in Full), which was correct. In another case, the compiler found a
bug in which the code assumed that a collection must contain an element, a benefit of not allowing
null in the language.

The Casino task was substantially more open-ended than the other tasks, requiring substantially
more time, but participants who had a full hour for the task were able to finish it. Some participants
defined states in the Casino contract (P35, P39), whereas others relied only on the states in the
Game contract (P37, P40). Both approaches led to a lot of dynamic state tests, since the Casino
object had to check to make sure the Game object was in an appropriate state. These checks could
have been avoided if the different states of Casino had different typestate specifications for their
references to the Game, an idea that occurred to P40 in retrospect. This observation represents
an opportunity for a future version of Obsidian in which states of owning objects are coupled to
states of owned objects, reducing the need for dynamic checks.

We noticed that participants who did better on the “advanced Java” portion of our screening
test seemed to complete tasks faster. We found that those test scores were positively correlated
with completion speed in the Auction task (r(4) = 0.96, p < 0.01).

5.3 Comparing Obsidian to Solidity

We conducted an RCT comparing Obsidian to Solidity. The results of this RCT are described in
detail in another paper [22], but in summary, we recruited 21 Java programmers and randomly
assigned them to use either Obsidian or Solidity. We excluded data from one participant, who spent
3 hours, 11 minutes on the tutorial (three standard deviations above the mean, leaving insufficient
time for the rest of the tasks). We randomly assigned 10 participants to each condition. This study
used a tutorial and tasks that were similar to those in the summative usability study (Section 5.2);
the Prescription task was modified to more exactly match the earlier permissions study described
in Section 5.1.3.

Each study session lasted up to 4 hours and participants were compensated with a $75 gift
certificate. We allowed them as much time as needed to complete the tutorial. Then, we gave 30
minutes for Auction, 35 minutes for Prescription, and any remaining time for Casino. Finally, we
gave them a survey regarding their opinions. We offered participants breaks between tasks and
also provided participants with snacks and water during the study.

5.3.1 Results and Discussion. In the Auction task,7 of 10 Obsidian participants completed the
task successfully. Two did not finish the task, and one did so incorrectly, accidentally refunding
money to the wrong bidder. Two of the seven successful Obsidian participants had received com-
piler errors indicating that they had lost assets, suggesting that Obsidian had helped them avoid
that bug. In contrast, of the 10 Solidity participants, only 2 completed the task correctly. Seven
said they finished the task but had bugs in their code; one ran out of time. We were interested
in whether Obsidian made it more likely for participants who believed they had completed their
tasks to have done so correctly. Regarding this question, there is a significant difference: Fisher’s
exact test (applied to the first two rows of Table 6) gives p ~ 0.015. That is, participants were

ACM Transactions on Computer-Human Interaction, Vol. 28, No. 4, Article 28. Publication date: July 2021.

PLIERS: A User-Centered Process for Programming Language Design 28:37

Table 6. Auction Task Results

Solidity Obsidian

Completed task correctly 2 7
Completed task with bugs 7 1
Time in min., completed tasks only; [95% CI] 12;[6.8, 17.4] 12; [6.4, 18.3]
Did not complete the task 1 2

N = 10 in each condition.

Table 7. Summary of Prescription Task Results

Solidity Obsidian
Static solutions: correct solutions/attempts N/A/5 6/6
Dynamic solutions: correct solutions/attempts 2/6 1/3
Completed within time limit 3 9

Mean time among successful participants; [95% CI] 20 min.; [0, 45] 22 min. [12, 33]

N =10 in each condition. Two Solidity participants tried both static and dynamic approaches, and one
Solidity participant did not modify the starter code at all, resulting in 11 Solidity attempts.

more likely to finish successfully if they used Obsidian (odds ratio 0.053). We also asked whether,
overall, Obsidian participants were more likely to finish the task correctly within the time limit.
For this question, Fisher’s exact test gives p ~ 0.070. Although p > 0.05 is generally interpreted as
“not significant,” the result indicates that a difference between conditions is likely. The results are
summarized in Table 6.

The Prescription task investigated whether participants could use ownership to statically ad-
dress a security problem. A total of 6 of the 10 Obsidian participants did so, suggesting that owner-
ship is learnable. A total of 6 of the 10 Solidity participants attempted a dynamic solution, but only
2 of them were able to finish it in the time available. Fisher’s exact test gives p =~ 0.14 for effect of
language choice on overall completion rate and p ~ 0.07 for rate of correct solutions among those
who said they had completed the task. As above, although p > 0.05 is generally interpreted as “not
significant,” the result indicates that a difference between conditions is likely.

In both conditions, some participants made Prescription mutable, even though that was ex-
plicitly disallowed by a comment in the program. We had selected an immutable design following
standard security advice, but the results suggest that a mutable design for Presciption might
have been more natural for some participants. The results are summarized in Table 7.

The Casino task was substantially more open-ended and offered more opportunities for mis-
takes. In part due to time spent on earlier tasks, only nine Solidity participants and five Obsidian
participants had enough time to arrive at a solution with which they were satisfied within their
four-hour time window; we did not set a separate limit for the task. We discarded data from one
Obsidian participant who encountered a compiler bug.

Results are summarized in Section 5.3.1. Notably, the four Obsidian participants who finished
the task all abused the disown keyword, despite verbiage in the training materials warning about
this. The result is that they lost track of assets, since their usage suppressed errors that the com-
piler would have otherwise given. This warrants further investigation in how to safely provide
language features that are necessary for some kinds of programs, but which nonetheless can be
used unsafely.

ACM Transactions on Computer-Human Interaction, Vol. 28, No. 4, Article 28. Publication date: July 2021.

28:38 M. Coblenz et al.

Table 8. Summary of Casino Task Results among Completed Programs that Compiled, Showing
Correct Solution Rates among Errors Made by More than One Participant

Solidity Obsidian

Said they were done working on Casino task when time expired 9 5
Completed Casino with a program that compiled 8 4
Completed task correctly (no identified bugs) 1 0
Winnings collection emits error if Casino is out of tokens 5 2
Only used disown safely N/A 0
Managed tokens correctly (not fabricating or losing them) 4 0
Mean completion time 37 min. 64 min.

Table 9. Perceptions of Ownership, States, and Assets on a 1-5 Scale (5 is best)

Solidity Obsidian
(N=6) (N-3)

How much did you like the language you used? 3.7 (0.82) 4.0 (0.53)
How well do you feel you understand the concept of ownership? 3.8 (0.98) 3.75 (0.99)
*How useful do you think ownership is? 3.0 (1.1) 4.88(0.36)
*How well do you feel you understand the concept of states? 4.8 (0.41) 4.1(0.64)
How useful do you think states are? 43 (0.81) 4.1(0.64)
Cells show average (standard deviation). * indicates that a Mann-Whitney U-test shows a significant difference
at p < 0.05.

The Obsidian participants who wrote code that compiled spent significantly longer on the
task than the Solidity participants did (p =~ 0.02, Mann-Whitney U-test, d ~ 1.9). This gives an
approximation of the cost of the stronger type system in implementing a software prototype (but
perhaps not in implementing a production-quality system). Of course, this cost may be worth
bearing, since the safety guarantees may result in a more efficient and safer software creation
process by reducing the testing burden. However, this benefit may require either language modifi-
cations or more training to avoid the risk of abusing disown. Future work will need to investigate
mitigating this risk and whether additional training and practice mitigate the cost of the stronger
type system.

We asked participants several questions about their opinions of the languages they used in
the study. Participants who were assigned to use Obsidian rated ownership as more useful than
participants who used Solidity (p ~ 0.002, d ~ 2.5). However, the Solidity participants indicated
that they felt they understood states better than the Obsidian participants did (p =~ 0.04, d ~ 1.3).
Results are shown in Section 5.3.1.

The survey also asked for additional comments. Three Solidity participants wrote that they
wished ownership were checked by the compiler (as is the case in Obsidian). Some participants
using Solidity wished they had a notion of state. For example, one wrote:

It also seemed like there should be some syntactic sugar for writing things like:
enum State { Foo, Bar, Buzz }
State s

since they are so common.

Some Obsidian participants wrote that they appreciated the tutorial and exercises, and that
ownership seemed natural after some practice.

ACM Transactions on Computer-Human Interaction, Vol. 28, No. 4, Article 28. Publication date: July 2021.

PLIERS: A User-Centered Process for Programming Language Design 28:39

5.3.2 Implications on PLIERS. The randomized controlled trial comparing Obsidian and Solidity
served in part to evaluate Obsidian and in part to evaluate PLIERS. In this RCT, we were able
to show a safety benefit of Obsidian in the Auction task, and were able to show that most of
the Obsidian participants were able to use ownership successfully in the Prescription task. This
shows that the tutorial method was mostly successful (though more success could likely have been
obtained by giving the participants more practice) and that the language design was effective
overall (modulo the abuse of disown that we observed). Every study design involves making
tradeoffs. The results here may show a tradeoff between training time and success rates; users
of PLIERS will need to decide, based on their own design and research goals, how to balance the
risks when designing their studies. However, the overall PLIERS design process did result in a
language that had significant benefits relative to the status quo, which we were able to measure
in a relatively low-cost study.

In retrospect, since only one of 20 participants completed the Casino task successfully (across
both conditions), that task was too hard for the amount of time we allowed. We recommend that
users of PLIERS carefully select success criteria in pilot studies in order to set appropriate task
time limits and difficulties.

6 STUDY DESIGN CHALLENGES AND SOLUTIONS

Section 6 summarizes the challenges that PLIERS addresses. Our primary interest is in program-
mers’ abilities to achieve their goals after they have become proficient in the programming lan-
guage, not on how easy it is for novices to learn the language. Thus, our evaluation approach
requires first teaching people a language and then observing their performance on tasks.

When we initially tried to apply HCI methods in our language design work, we were thwarted
by several challenges, described in the introduction: training, recruiting, high prototyping cost, and
variance. We also encountered additional challenges, such as interdependence of features, time man-
agement in studies, participant bias toward familiar languages, and unsound proposals by partici-
pants. In this section, we describe techniques we used when designing user studies in order to
address each challenge.

6.1 Training

Evaluating a programming language requires first teaching the programming language. Many uni-
versities offer term-length courses in specific programming languages or techniques; requiring
this kind of time commitment would make it extremely difficult to recruit participants. Further-
more, most courses ensure a consistent experience for all students by having all students learn the
material in parallel (for example, with one session per topic, where all students participate at the
same time). In contrast, our design approach was iterative, consistent with design methods used
in other areas of HCI [33]. We were interested in addressing a variant of our training challenge
that asks: What would be an effective way to teach a programming language in a consistent way
to many participants in sequence?

Initially, we created a textual guide to the new programming language, and asked participants
to read it before doing the tasks relevant to each study. The guide was relatively short; it could be
read thoroughly in under an hour. Unfortunately, this approach had very significant limitations.
Although it was effective for some participants, others only skimmed the material and were then
unable to complete the programming tasks. Because the guide was not structured as reference
material and it included substantial conceptual information, skimming the guide was insufficient.

We were able to solve the problem with two adaptations: (1) break the guide into much smaller
pieces; and (2) ask participants to answer questions or complete small tasks to assure they had
absorbed the material of each piece. For example, we broke the Obsidian tutorial into 10 parts, and

ACM Transactions on Computer-Human Interaction, Vol. 28, No. 4, Article 28. Publication date: July 2021.

28:40 M. Coblenz et al.

Table 10. How PLIERS Addresses Common Challenges in Running User Studies
on Programming Languages

Challenge Approaches

Training e Include knowledge assessments and practice problems in tutorial
e Divide tutorial into small pieces
e Answer questions during training phase of study
e Automatically provide feedback for wrong answers

Recruiting e In academic settings, recruit master’s students, who frequently
have professional experience that may be representative of many
practitioners

e Recruit professionals, but only when their expertise is needed

e Appeal to professionals’ altruism for recruiting (they may not be
incentivized by typical study budgets)

e Screen participants carefully; set a high bar for student participa-
tion

e Evaluate language design research questions in the context of a lan-
guage with which many possible participants are familiar

High prototyping e Back-port language design questions to existing languages (also
cost helps isolate effects of independent variables)
e Use Wizard of Oz to simulate tools that do not exist yet: use a plain
text editor rather than a real IDE, and have an experimenter provide
feedback in lieu of a real compiler or interpreter

Interdependence e Isolate design questions by back-porting them to a familiar lan-
of features guage
e Mitigate non-orthogonality risk with summative studies

Variance and e Triangulate with multiple study types
external validity e Break tasks into subtasks
e Recruit from populations with sufficient programming skills and
knowledge; pre-screen participants.

Time management e Pilot repeatedly to assess how long tasks usually take
e Set cutoff times so that most people will succeed at most tasks
o Allow participants extra time when possible, then report these suc-
cesses separately from the “within time limit” results

Bias toward e Staged natural programming approach: sequentially expose addi-
familiar languages tional constraints to participants
e Request that participants do tasks using specific language designs
that are being evaluated

Unsound proposals e Provide sound alternatives and ask participants to use them
e Provide participants with expert feedback on design ideas

ACM Transactions on Computer-Human Interaction, Vol. 28, No. 4, Article 28. Publication date: July 2021.

PLIERS: A User-Centered Process for Programming Language Design 28:41

contract Money {
int amount;
transaction getAmount() returns int {
return amount;

}
contract Wallet {
Money@Owned m;
Wallet@Owned () {
m = new Money();

transaction spendMoney() {

transaction receiveMoney(Money@Owned >> Unowned mon) returns Money@Owned
Money temp = m;
m = mon;
return temp;

transaction checkMoney() returns Money@Owned {
return m;

}

Q15. Would we get a compiler error with the checkMoney function?

() Yes, you cannot return a field of a contract in a transaction

() No, the return type matches the type of m

(® Yes, returning m makes it Unowned, which doesn't match the ownership status of m's declaration
() No, mis of type Owned, which matches the ownership status of m's declaration

(O None of the above

Fig. 10. One question from the Obsidian tutorial. The question assesses whether the participant has under-
stood that at the ends of transactions, fields must be have types that match their declarations, and that
returning a variable consumes any ownership in the variable. If a participant submits an incorrect answer,
the survey tool informs them of their error so they can fix their misunderstanding.

still the average participant completed it in under 90 minutes. We found that we were able to design
tasks that checked understanding that were brief and did not require substantial experimenter
intervention (helpful for ensuring consistency). We used a web survey tool (Qualtrics [75]) to guide
participants through the tutorial and encourage deeper understanding through multiple-choice
and short-answer questions. The tool also offered automatic feedback on participants’ answers to
multiple-choice questions. For example, Figure 10 shows a question about a code fragment with
the correct answer selected. The relevant language details are explained in Section 1.2.

Although we originally wanted to make the tutorial stand alone so that every participant would
have the same experience, we found that to be impractical; participants inevitably had ques-
tions about the materials, and forcing them to continue without having their questions answered

ACM Transactions on Computer-Human Interaction, Vol. 28, No. 4, Article 28. Publication date: July 2021.

28:42 M. Coblenz et al.

Obsidian
Docs » Obsidian Tutorial » Ownership - Introduction © Edit on GitHub

Getting Started

Ownership - Introduction

© Obsidian Language Tutorial Principles Of Ownership
B Ownership - Introduction

Principles of ownership Our new programming language is object-oriented. It includes contracts, which are like

)) classes, and can have fields and transactions, analogous to Java fields and methods
Ownership - Transactions . 141, it
respectively. An Obsidian program must have exactly one main contract . In addition, of

Uz R the many variables or fields that reference objects, exactly one of them can own the

Ownership - Miscellaneous object, as seen in diagram (a) below. An object can have any number of Unowned

Assets references, and, if the object is not Owned, it can have any number of Shared references

States - Introduction (shown in (b) below). An object with Shared references can also have Unowned
references, but not Owned ones.

States - Manipulating State

States - Miscellaneous

Object@Unowned Object@Shared
States and Assets

i i di i Object@Unowned Object@Unowned Object@Shared Object@Shared
Using Obsidian on a Blockchain

Taking Advantage of Ownership @
Obsidian Reference
Using the compiler

Ca n Ohe
Object@Owned Object@Shared

& Read the Docs

(a) ®)

Fig. 11. A page from the Obsidian tutorial. The navigation bar at left shows how the tutorial was divided
into 11 sections.

resulted in them being unable to complete the tasks. However, we found that if an experimenter
was available to answer questions, most participants asked only a small number of questions,
which could be addressed rapidly. This approach is arguably more similar to a real-world language
learning experience than an approach in which no questions are answered; normally, learners can
search the Internet for answers to their questions, ask friends for help, and so on.

In summary, although our initial tutorial was not an effective way of teaching the language, and
the final tutorial was not sufficient by itself, dividing the tutorial into small pieces, providing tasks
to help participants check and reinforce their understanding, and having an expert who could
answer questions allowed most of our participants to learn the needed material in a short period
of time. Figure 11 shows how the tutorial was broken into 11 different sections, each of which was
followed by exercises for participants to complete.

6.2 Recruiting

Evaluation requires participants who are sufficiently skilled that they can rapidly learn a new pro-
gramming language and then complete tasks using the new language. This would seem to require
lengthy user studies with skilled participants, who can be challenging to recruit and retain for the
required period of time. Iterative evaluation requires a large number of participants, since partici-
pants who learned an earlier version of the language can no longer provide fresh perspectives on
new ideas. Although some user interfaces for experts in other domains require recruiting members
of a small population, many of those interfaces are for short term, focused tasks rather than lengthy
problem-solving tasks. Furthermore, although it is typical to conduct studies with students, this
relates to our external validity challenge: To what extent do results from students apply to the
professional software engineers that are the target of our language?

We found in our work on Glacier and Obsidian that we were able to usefully combine results
from different populations. Rather than trying to exclusively obtain professional software engi-
neers, we found that we could design studies that yield meaningful results from students; for

ACM Transactions on Computer-Human Interaction, Vol. 28, No. 4, Article 28. Publication date: July 2021.

PLIERS: A User-Centered Process for Programming Language Design 28:43

other aspects of the research, we recruited limited numbers of professionals. For example, when
we wanted to interview software engineers to find out their experiences of using immutability con-
structs in the Glacier work, we recruited senior-level professional software engineers. However,
for the other studies, we made three observations that enabled us to do our studies with various
kinds of students.

First, about 41% of professional developers have been programming professionally for less than
five years [87]. Many graduate students have some professional experience. For example, students
at the Professional Master’s program in Computer Science & Engineering at the University of
Washington were reported to have an average of five years of professional experience [67]. Simi-
larly, the Carnegie Mellon Master of Software Engineering program requires all students to have
at least two years of experience [95]. By recruiting from graduate students, we were able to attract
a population that is similar to a significant fraction of professional programmers and software
engineers.

Second, in usability studies, it is typical to assume that usability problems encountered by even
one user may be experienced by many others. Not every usability problem can be addressed with-
out risking introducing new usability problems, but our experience is that many can be. For ex-
ample, error messages, documentation, and keywords can be interpreted in ways that were not
intended by the author; clarifying the text can prevent others from being confused in the same
way. Syntax borrowed from other languages can be evocative in useful ways, but when the se-
mantics do not match precisely, confusion can result; this can be addressed by choosing distinct
syntax. On the other hand, semantic or structural changes can have consequences on users that
are hard to predict, especially since one high-level change may necessitate a series of lower-level
changes, which each have their own impact. For example, in Obsidian, moving transactions so
that they were no longer lexically scoped in states necessitated adding special syntax for specify-
ing the initial type of the receiver, this. We had selected that approach based on consistency with
Java, which already uses that design. Unfortunately, that approach was surprising to some of our
participants.

By addressing problems that student participants encounter, we prevent professionals from en-
countering those problems as well. Of course, some of the problems may not be ones that profes-
sionals would encounter, but nonetheless, addressing them may improve learnability, making the
system better overall. When changes that would improve the system for the participants might
degrade performance for experienced users, then the designer can make an informed tradeoff, po-
tentially addressing the problem in training materials rather than in a design change.

Third, for Obsidian studies, we developed a screening instrument so that we could include only
participants who had appropriate programming skills. The instrument, which is a web-based sur-
vey, takes most participants under 10 minutes to complete. The instrument also included more
difficult questions; because of the difficulty, we did not use this portion for screening. However,
we found that performance on the more difficult portion of the instrument was positively corre-
lated with speed in one of our programming tasks even in a small, six-participant study. At the time
of the Glacier studies, we had not yet developed this instrument; the more-complex programming
tasks in the Obsidian studies motivated us to screen our participants more carefully.

Designing a screening instrument (or deciding not to use one) depends on an assessment of what
knowledge and skills are required of participants, and of how honest the prospective participants
will be in their self-assessment. If prospective participants can reliably self-assess preparedness for
the study, and they can be assumed to be honest, then screening may be unnecessary. On the other
hand, even in this case, assessing programming knowledge and skills can be useful for understand-
ing how these relate to task performance. In the Obsidian studies, we invited participants based
on a “basic Java” portion of the screening instrument and observed that performance on one of

ACM Transactions on Computer-Human Interaction, Vol. 28, No. 4, Article 28. Publication date: July 2021.

28:44 M. Coblenz et al.

the tasks was correlated with performance on the “advanced Java” portion of the instrument, sug-
gesting that Java programming knowledge was a significant influence on task performance. This
is somewhat surprising, since the screening test examined language-specific knowledge, but did
not give any actual programming tasks. We would encourage others to consider using this kind
of screening instrument, since it is low-cost (generally under 10 minutes per participant), resulted
in participants who were generally capable Java programmers, and portions of it correlated with
task performance.

We found that relatively small incentives were sufficient to motivate students to participate in
our studies. For 3-hour studies, we offered a $50 Amazon gift card; and for 4-hour studies, we
offered a $75 Amazon gift card. For shorter studies, we paid $10/hour. We recruited professionals
from among our personal networks and did not offer them a specific incentive to participate.

6.3 High Prototyping Cost

Programming language designers are accustomed to creating high-cost implementations, not low-
cost prototypes, but traditional HCI methods assume that low-cost prototypes can be created. Tra-
ditional ways of evaluating programming languages typically require a compiler or interpreter as
well as theoretical work to create a sound design (informally, one in which programs mean what
they are supposed to mean and the safety guarantees that the type system claims to provide can
actually be provided). If one insists on creating a sound, formal model of the language before eval-
uating it with users, iteration can require so much time that it is impractical. Furthermore, the
cost is increased by the expectation of sophisticated language-dependent tooling in IDEs: syntax
highlighting, autocomplete, high-quality error messages, and the like.

Instead, PLIERS does not insist on doing this work at the beginning. We outline a potentially
sound underlying formalism without proving all the relevant properties. Then, we design a surface
language and evaluate it with users so that we can obtain feedback early. In doing so, we accept
the risk that the formal system cannot be made sound without invalidating the data we gathered
from users, but in practice, we found that usually any mistakes are minor and can be corrected
without having to redo the user studies.

Late in the project, we found that designing and running user studies of low-level features typi-
cally required much more time than implementing the features; for those, it make sense to imple-
ment the alternatives rather than simulating them. On other other hand, early in the project, many
high-level design decisions would have required substantial design and implementation work.
Among those, we carefully selected questions for which user input would be the most impact-
ful. For example, permissions were a key aspect of the Obsidian design that had not been adopted
broadly, so there was little evidence regarding their usability. A key approach in minimizing cost
of language changes was to re-use training materials across phases of the studies to the extent pos-
sible, allowing us to amortize the cost of their development across multiple studies. The training
materials co-evolved with the implementation and represented a significant investment.

6.4 Interdependence of Features

Suppose a comparison between two languages showed that one allowed participants to complete
tasks faster or more successfully. If the two languages were very different from each other, it would
be unclear which aspects of the new language were actually helpful. For example, a comparison
between a particular functional language and a particular object-oriented language would not
result in fine-grained, actionable design guidance for a new language. Furthermore, if the study
was done in the context of a language that was new to participants, confusion might be due to
unfamiliar aspects of the language that are unrelated to the design question of interest.

ACM Transactions on Computer-Human Interaction, Vol. 28, No. 4, Article 28. Publication date: July 2021.

PLIERS: A User-Centered Process for Programming Language Design 28:45

By using the back-porting approach described above, we isolated particular design questions in
the context of an existing language. Although this does not enable us to address very high-level
design questions, such as whether the language should be object-oriented or functional, it allowed
us to obtain actionable data about particular design decisions.

Theoretical refinement is another approach that helps address feature interactions, since fre-
quently, key theoretical issues relate to interactions between language features. Likewise, case
studies, natural programming, and usability studies with appropriate tasks can lead to insight re-
garding cross-cutting concerns.

Of course, it is still the case that the design choices are not orthogonal. To address this, we inte-
grate the results into a new language and conduct summative studies on the completed language
as a whole.

6.5 High Variance and External Validity

The nature of programming is that there is huge variance in performance on tasks among different
programmers [65]. When asking participants to complete programming tasks to help a designer
iterate on a language design, participants frequently get stuck on problems that are not of interest
to the designer. For example, in one Obsidian study, a participant spent significant time writing
code to recurse through a data structure, even though code had been provided to do exactly that.
Issues involving the details of the data structure were intended to be out of scope for the study.
On the other hand, constraining tasks too much may not represent the complexity of real-world
programming problems, which limits the external validity of the studies.

We use three techniques to address these problems. First, we combine the results of different
kinds of studies (triangulation [80]). Qualitative studies of varied tasks with varied participants,
in which timing is not an important dependent variable, can identify usability problems, and an
experimenter can guide participants away from problems that are not intended to be part of the
study. Quantitative studies typically involve fairly constrained tasks, but we can hope to obtain
statistical significance in a comparison between two different designs. Finally, although this article
does not focus on our case study work, we also used case studies to address questions of expressive-
ness: elucidating what happens when the language is used to solve a larger programming problem,
which cannot be completed in a single-session user study; for more information, see Coblenz et al.
[24] and Coblenz et al. [26].

Second, particularly in RCTs (in which the experimenter cannot provide any guidance), we give
several independent tasks rather than one long task. Then, we analyze the tasks separately, al-
though of course the performance on the tasks is not independent because the same participant
completed all of the tasks. Furthermore, dividing tasks into multiple pieces enables separate anal-
ysis of complete vs. incomplete tasks. For example, in the Glacier studies, we gave both simple
and complex immutability specification tasks rather than one combined task. In the Obsidian
studies, we separated a complex task, Casino, from simpler tasks, Auction and Prescription, even
though the research questions overlapped. This allowed participants to succeed in the simpler
task even if the more complex task was too difficult for them. It also offered an opportunity for
participants to apply knowledge gained in the simpler task when working on the more complex
task.

Third, recruiting from a constrained population reduces the impact of uninteresting noise. The
primary technique to use is a screening survey, which participants must complete before being
selected to participate in the study. This allows the experimenter to ensure that programmers have
sufficient programming skills and knowledge. Of course, one must be careful to avoid screening
out participants that may, in fact, be representative of the population to which the results should
generalize.

ACM Transactions on Computer-Human Interaction, Vol. 28, No. 4, Article 28. Publication date: July 2021.

28:46 M. Coblenz et al.

In qualitative studies, it is sometimes unclear how many participants to recruit. Nielsen and
Landauer found that the best benefit/cost ratio occurred at 3.2 participants in a set of their usability
studies, which were of a medium-large software project [66]. We found it was effective to consider
the following factors in assessing when to stop recruiting more participants:

—To what extent new data (from the most recent participants) duplicates existing data?

—To what extent the researcher is willing to tolerate risk of missing usability problems?

—Fidelity of the current prototype (it may not be worth exhaustively testing low-fidelity pro-
totypes).

—Specific research objectives: Have the primary research questions been addressed yet?

6.6 Time Management

As a practical matter, one needs to keep each participant’s commitment brief in order to be able
to recruit and retain enough participants and to minimize study cost. However, the experiment
designer needs to allow enough time for most participants to finish the given programming tasks
(at least in some of the experimental conditions). To address this problem, we conducted pilot
studies to estimate the range of times that most participants would spend on each task. In the
pilots, we found that we could allow participants enough time such that when the participant
did not finish in the allotted time, the experimenter usually believed that even given substantial
additional time, the participant would not have completed the task. This belief was driven by
observing the difficulties that participants were facing at the end of the time window. Sometimes
the problem was a design choice by the participant that made the problem much more challenging
than anticipated; other times we believe it was due to lack of programming skill, since we observed
some participants making basic programming errors.

In the Obsidian RCT, we found that the variance was even higher than we predicted during the
pilots, suggesting the need for more pilots, more varied participants in pilots, or the allowance of
additional time in the RCT in expectation of additional variance.

The choice of study pre-screening method introduces a tradeoff. A lax pre-screening procedure
makes it easier to obtain enough participants from a population that generalizes to a broader com-
munity. A strict pre-screening procedure that admits only the most expert participants may reduce
times as well as variance, but may make it difficult to recruit participants and harder to generalize
the findings. In university settings, with many novices, we advise erring on the stricter end of the
spectrum, since most real practitioners will be more skilled than most students.

Rather than giving fixed limits for each task in advance, we aimed to maximize effective use
of participants’ time. When participants had additional time remaining in their commitment (for
example, in one study, we told participants that the study would take 4 hours), we could let the
participants spend longer than budgeted on the later tasks if their earlier tasks took less time than
expected. Then, when reporting results, we could consider what the success rate would have been
if everyone had had only the time available of the participant with the minimum time window for
that task. In addition, we could report which participants succeeded given the additional time. This
allowed us to make the best use of our participants’ time while maintaining experimental validity.

6.7 Bias Toward Familiar Languages

In a user study of a new programming language in which the participants are experienced pro-
grammers, one might expect that the language that performs “best” might be one with which
participants are already familiar. Furthermore, when asked to join in participatory design exer-
cises, perhaps participants might be likely to guide the design toward languages with which they
are already familiar.

ACM Transactions on Computer-Human Interaction, Vol. 28, No. 4, Article 28. Publication date: July 2021.

PLIERS: A User-Centered Process for Programming Language Design 28:47

We used three techniques to address this problem. First, to find out what approaches might be
easily learnable and would make immediate sense to participants, we adapted the natural program-
ming elicitation technique [63]. In it, participants are given blank paper or a text editor and asked
to write programs without being given a specific language to use. As a form of participatory design,
the goal is to elicit from participants the way they would naturally express the ideas in question.
Although traditional natural programming studies give the programmer no training at all, we took
a staged approach. We asked participants to write programs on a blank screen with no training.
Then, we told them information about the language design, and asked them to do additional pro-
gramming tasks with the new (but still underspecified) design. For example, we gave participants
a state transition diagram and asked them to write a program that expresses the state transitions.
By scaffolding the participants’ work in stages, we were able to answer both questions about par-
ticipants’ initial expectations as well as identifying what approaches might be most natural given
our preliminary language design ideas.

Second, in most of the studies, we constrained the participants’ work according to our design
ideas, which were unfamiliar to our participants. Because the languages were designed to provide
particular formal safety guarantees, we were interested in the impact of the language features
related to those properties. In general, providing stronger guarantees requires that programmers
enable the compiler to prove safety properties, which may require additional work from program-
mers. We were interested, then, in whether participants could complete tasks in the language even
though they were obtaining stronger safety guarantees.

Third, we focused on observing and understanding behavior rather than participants’ prefer-
ences. By doing so, we could leverage participants’ backgrounds in teaching them our language
rather than regarding prior experience as an obstacle to overcome.

To encourage innovative responses (rather than ones that merely reflected prior training), we
used natural programming for situations in which commonly-used languages could not directly
represent the requirements we gave participants. We also used natural programming for low-level
syntactic choices (e.g., keyword selection). We also instructed participants explicitly to be creative
and not write in any particular existing language. Finally, we were careful to interpret the results
in the context of participants’ prior knowledge. For example, when participants use curly braces to
denote blocks, the content of the blocks may be interesting even though the choice of curly braces
is not.

6.8 Unsound Proposals by Participants

Another common limitation of natural programming is that participants lack expertise in language
design, resulting in unsound proposals. This problem occurs with participatory design in other
domains as well, and the usual solution is to use participant ideas as input to an expert-led design
process [71], which applies here as well.

Our language design process typically involves writing multiple example programs, each of
which assumes a particular language design and explores a particular kind of programming prob-
lem. The examples typically expose tradeoffs in language design; choosing which tradeoff to make
can be informed with user input. We were able to use some of these prototypes to develop user
studies, in which we presented participants with several options rather than expecting them to
compose designs from scratch. In some cases, we tried to generate all feasible options in a par-
ticular design space (due to various technical constraints, this might result in three or four op-
tions), and then narrowed this down to the most promising approaches based on the tradeoffs that
were apparent. We asked participants to complete tasks using the best candidates so that we could
come to an informed conclusion about which of the options were best, rather than merely asking

ACM Transactions on Computer-Human Interaction, Vol. 28, No. 4, Article 28. Publication date: July 2021.

28:48 M. Coblenz et al.

participants for their opinions. This allowed us to focus the process on designs that would fulfill
the technical requirements while still obtaining relevant design insights.

7 FUTURE WORK

In this article, we assessed PLIERS by applying it to two different language designs. This approach
greatly facilitated developing and iterating on the PLIERS process. However, this only a prelim-
inary assessment of the approach. In the future, we would like to show that these methods can
be used by language designers with a variety of backgrounds and goals. As a practical matter, re-
cruiting language designers to participate in a language study is a challenging and heavyweight
endeavor, but future work may identify promising contexts in which to evaluate PLIERS more
broadly. We have begun by teaching PLIERS to students in an undergraduate programming lan-
guage design class, and found that the students were able to use some of the methods to help them
iterate on their language designs.

Creation of languages for professional developers motivated our work on PLIERS, but the ap-
proach would seem to be applicable to languages for novice programmers as well. In the future,
we would like to apply PLIERS to languages that target novices. Differences might involve a focus
on the training process itself (rather than using training to prepare participants for the rest of
the study) as well as different design and interpretation of results of natural programming studies,
since participants may be less able to imagine what might be possible but also less influenced by
their experience.

One particularly challenging aspect of applying PLIERS is that the theoretical aspects of the
design work require substantial background. Perhaps in the future, mechanized tools could help
those who are not programming language experts design safe languages in their own application
domains. By using program synthesis techniques, a language synthesis tool might be able to search
the space of languages that have particular formal properties to help users identify safe design
candidates. Creating Obsidian required spending months developing the underlying core calculus
and proving it sound; if this effort could be mechanized, language iteration would be much faster,
and could be feasible for those without formal programming language training.

The Wizard of Oz approach that we proposed in this article relies on an experimenter who
can accurately simulate the kinds of error messages that a compiler might generate. We envision
a utility that would help promote consistency and improve reliability. Such a tool would accept
error messages entered by experimenters during experiments and deliver them to participants in
a realistic way. By recording the errors that were delivered, the experimenter could re-use existing
error messages as well as record participants’ reactions. This approach might lead toward refined
error messages that are clearer for users to understand.

Another limitation of the methods we describe in this article is that although one can do studies
that assess the usability of particular language design choices, in some cases design choices interact
with each other. As a result, it is not clear that designers can combine the results of different studies
and expect that the resulting language will be usable. In this work, we mitigate this threat in
two ways. Summative studies address the integrated language and can reveal problems that arise
from combinations of design choices. Likewise, by triangulating design through multiple kinds of
studies, some of which crosscut multiple language design choices, we obtain different perspectives
on various combinations of features. However, future method development work may be able to
address this problem more directly.

In the future, we hope to explore how PLIERS could be used to develop tools for other problem-
solving contexts beyond programming. Attributes of programming that are shared with other
kinds of problem-solving activities include:

ACM Transactions on Computer-Human Interaction, Vol. 28, No. 4, Article 28. Publication date: July 2021.

PLIERS: A User-Centered Process for Programming Language Design 28:49

High variance: Performance in cognitive processes can be difficult to predict [58]; other domains
in which this might be relevant include chess and music [46].

Range of working styles: Bergstrom and Blackwell described a diverse collection of different
approaches to programming problems [7], such as bricolage/tinkering and engineering. These
different styles may be used even by different people using the same language, impeding a
designer’s attempts to anticipate a user’s strategy or behavior.

High stakes: Errors when programming can contribute to serious real-world safety problems,
e.g., in avionics or health care systems.

For example, CAD tools affect their users’ creative processes [79]; likewise with process engi-
neering tools [15] and even drug design tools [91]. All of these domains involve expert problem-
solving by a variety of different people with high costs of failure. As such, they might be amenable
to use the PLIERS process to help designers in those domains create tools that are effective for
their target users.

8 CONCLUSION

PLIERS represents a new approach to designing programming languages for software engineers.
PLIERS is exemplified in the creation of Glacier and Obsidian, which reflect a new way of designing
programming languages that integrates user-centered techniques into many stages of the design
process. By incorporating feedback from users, we obtained insights that led to two languages in
which programmers can be effective at obtaining stronger safety guarantees than prior languages
provided. We expect our new approach to language design is applicable to the design of other
programming languages, and even to the design of a wide variety of different kinds of problem-
solving tools.

ACKNOWLEDGMENTS

We appreciate the help of Eliezer Kanal at the Software Engineering Institute, who helped start the
Obsidian project, as well as Jim Laredo, Rick Hull, Petr Novotny, and Yunhui Zheng at IBM, who
provided useful technical and real-world insight regarding Obsidian. We also appreciate the help
of Sam Weber, who helped start the Glacier project. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the authors and do not necessarily reflect
the views of any of the funding agencies.

REFERENCES

[1] Salman Ahmad, Alexis Battle, Zahan Malkani, and Sepander Kamvar. 2011. The jabberwocky programming envi-
ronment for structured social computing. In User Interface Software and Technology (UIST’11). ACM, 53-64. DOI:
https://doi.org/10.1145/2047196.2047203

[2] Jonathan Aldrich, Joshua Sunshine, Darpan Saini, and Zachary Sparks. 2009. Typestate-oriented programming. In
Companion of Object Oriented Programming Systems, Languages, and Applications (OOPSLA’09). 1015-1022. DOI:
https://doi.org/10.1145/1639950.1640073

[3] Leonardo Alt and Christian Reitwiessner. 2018. SMT-based verification of solidity smart contracts. In Leveraging
Applications of Formal Methods, Verification and Validation. Industrial Practice. Springer

[4] Celeste Barnaby, Michael Coblenz, Tyler Etzel, Eliezer Kanal, Joshua Sunshine, Brad Myers, and Jonathan Aldrich.
2017. A user study to inform the design of the obsidian blockchain DSL. In Workshop on Evaluation and Usability of
Programming Languages and Tools (PLATEAU’17).

[5] Nels E. Beckman, Duri Kim, and Jonathan Aldrich. 2011. An empirical study of object protocols in the wild. In
European Conference on Object-oriented Programming (ECOOP’11). 2-26. Retrieved from http://dl.acm.org/citation.
cfm?id=2032497.2032501.

[6] E. D. Berger, S. M. Blackburn, M. Hauswirth, and M. Hicks. 2018. Empirical Evaluation Checklist (beta). Retrieved
from http://www.sigplan.org/Resources/EmpiricalEvaluation/.

ACM Transactions on Computer-Human Interaction, Vol. 28, No. 4, Article 28. Publication date: July 2021.

https://doi.org/10.1145/2047196.2047203
https://doi.org/10.1145/1639950.1640073
http://dl.acm.org/citation.cfm?id=2032497.2032501
http://www.sigplan.org/Resources/EmpiricalEvaluation/

28:50 M. Coblenz et al.

[7] Ilias Bergstrom and Alan F. Blackwell. 2016. The practices of programming. In Visual Languages and Human-Centric

Computing (VL/HCC’16). IEEE, 190-198. DOI : https://doi.org/10.1109/VLHCC.2016.7739684

Karthikeyan Bhargavan, Nikhil Swamy, Santiago Zanella-Béguelin, Antoine Delignat-Lavaud, Cédric Fournet,

Anitha Gollamudi, Georges Gonthier, Nadim Kobeissi, Natalia Kulatova, Aseem Rastogi, and Thomas Sibut-Pinote.

2016. Formal verification of smart contracts. In ACM Workshop on Programming Languages and Analysis for Security

(PLAS’16). DOI: https://doi.org/10.1145/2993600.2993611

Kevin Bierhoff and Jonathan Aldrich. 2007. Modular typestate checking of aliased objects. In Object-oriented Program-

ming Systems, Languages, and Applications (OOPSLA’07). 301-320. DOI : https://doi.org/10.1145/1297027.1297050

[10] Kevin Bierhoff and Jonathan Aldrich. 2008. PLURAL: Checking protocol compliance under aliasing. In Compan-
ion of International Conference on Software Engineering (ICSE Companion’08). 971-972. DOI : https://doi.org/10.1145/
1370175.1370213

[11] Alan Blackwell and Margaret Burnett. 2002. Applying attention investment to end-user programming. In Human
Centric Computing Languages and Environments (HCC’02). IEEE Computer Society, Washington, DC, 28-30. DOI:
https://doi.org/10.1109/HCC.2002.1046337

[12] Ann Blandford and Thomas Green. 2008. Methodological development. In Research Methods for Human-Computer
Interaction, Paul Cairns and Anna L. Cox (Eds.). Cambridge University Press, 158-174. DOI: https://doi.org/10.1017/
CB09780511814570

[13] Joshua Bloch. 2008. Effective Java, Second Edition. Addison-Wesley.

[14] Michael Bostock and Jeffrey Heer. 2009. Protovis: A graphical toolkit for visualization. IEEE Transactions on Visual-
ization and Computer Graphics 15, 6 (2009), 1121-1128. DOI: https://doi.org/10.1109/TVCG.2009.174

[15] Bertrand Braunschweig and Rafiqul Gani. 2002. Software Architectures and Tools for Computer Aided Process Engineer-

ing. Computer Aided Chemical Engineering, Vol. 11. Elsevier.

Raymond P.L. Buse, Caitlin Sadowski, and Westley Weimer. 2011. Benefits and barriers of user evaluation in software

engineering research. In Object-oriented Programming, Systems, Languages, and Applications (OOPSLA’11). 643-656.

DOI: https://doi.org/10.1145/2076021.2048117

Roger D. Chamberlain. 2017. Assessing user preferences in programming language design. In Symposium on New

Ideas, New Paradigms, and Reflections on Programming and Software (Onward! ’17). Association for Computing Ma-

chinery, 18-29. DOI: https://doi.org/10.1145/3133850.3133851

Sarah Chasins. 2017. Helena: Web Automation for End Users. Retrieved from http://helena-lang.org/.

Michael Coblenz. 2020. User-Centered Design of Principled Programming Languages. Ph.D. Dissertation. Carnegie

Mellon University, 5000 Forbes Ave., Pittsburgh, PA. CMU-CS-20-127.

Michael Coblenz, Jonathan Aldrich, Brad Myers, and Joshua Sunshine. 2020. Obsidian vs. Solidity RCT replication

package. DOI: https://doi.org/10.1184/R1/12771074.v1

Michael Coblenz, Jonathan Aldrich, Brad A. Myers, and Joshua Sunshine. 2018. Interdisciplinary programming lan-

guage design. In Symposium on New Ideas, New Paradigms, and Reflections on Programming and Software (Onward!’18).

133-146. DOI: https://doi.org/10.1145/3276954.3276965

Michael Coblenz, Jonathan Aldrich, Brad A. Myers, and Joshua Sunshine. 2020. Can advanced type systems be us-

able? An empirical study of ownership, assets, and typestate in obsidian. In Object-oriented Programming Systems,

Languages, and Applications (OOPSLA’20).

Michael Coblenz, Gauri Kambhatla, Paulette Koronkevich, Jenna L. Wise, Celeste Barnaby, Joshua Sunshine, Jonathan

Aldrich, and Brad A. Myers. 2019. Usability Methods for Designing Programming Languages for Software Engineers.

arXiv:1912.04719

Michael Coblenz, Whitney Nelson, Jonathan Aldrich, Brad Myers, and Joshua Sunshine. 2017. Glacier: Transitive

class immutability for java. In International Conference on Software Engineering (ICSE’17). IEEE Press, 496-506. DOI:

https://doi.org/10.1109/ICSE.2017.52

Michael Coblenz, Whitney Nelson, Jonathan Aldrich, Brad Myers, and Joshua Sunshine. 2020. Glacier software and

user study replication package. DOI: https://doi.org/10.1184/R1/12108693.v1

Michael Coblenz, Reed Oei, Tyler Etzel, Paulette Koronkevich, Miles Baker, Yannick Bloem, Brad A. Myers, Joshua

Sunshine, and Jonathan Aldrich. 2020. Obsidian: typestate and assets for safer blockchain programming. ACM Trans-

actions on Programming Languages 42, 3 (2020). DOI : https://doi.org/10.1145/3417516

Michael Coblenz, Joshua Sunshine, Jonathan Aldrich, Brad Myers, Sam Weber, and Forrest Shull. 2016. Exploring

language support for immutability. In International Conference on Software Engineering (ICSE’16). ACM, 736-747.

DOI: https://doi.org/10.1145/2884781.2884798

Michael Coblenz, Joshua Sunshine, Jonathan Aldrich, Brad Myers, Sam Weber, and Forrest Shull. 2016. Exploring

Language Support for Inmutability. Technical Report CMU-ISR-16-106. Carnegie Mellon University.

Michael Coblenz, Joshua Sunshine, Jonathan Aldrich, and Brad A. Myers. 2019. Smarter smart contract development

tools. In 2nd International Workshop on Emerging Trends in Software Engineering for Blockchain. DOI : https://doi.org/

10.1109/WETSEB.2019.00013

[8

=

—
=}
-

—
=
(=)

[l

—
—
~

—

— — —
%) U
S O
A 2%

—
oo
iy

—

[22

=

[23

=

—
S
=

[l

[25

[’

26

=

[27

—

[28

=

[29

[

ACM Transactions on Computer-Human Interaction, Vol. 28, No. 4, Article 28. Publication date: July 2021.

https://doi.org/10.1109/VLHCC.2016.7739684
https://doi.org/10.1145/2993600.2993611
https://doi.org/10.1145/1297027.1297050
https://doi.org/10.1145/1370175.1370213
https://doi.org/10.1109/HCC.2002.1046337
https://doi.org/10.1017/CBO9780511814570
https://doi.org/10.1109/TVCG.2009.174
https://doi.org/10.1145/2076021.2048117
https://doi.org/10.1145/3133850.3133851
http://helena-lang.org/
https://doi.org/10.1184/R1/12771074.v1
https://doi.org/10.1145/3276954.3276965
http://arxiv.org/abs/1912.04719
https://doi.org/10.1109/ICSE.2017.52
https://doi.org/10.1184/R1/12108693.v1
https://doi.org/10.1145/3417516
https://doi.org/10.1145/2884781.2884798
https://doi.org/10.1109/WETSEB.2019.00013

PLIERS: A User-Centered Process for Programming Language Design 28:51

[30]
[31]

[32]

Nils Dahlbéck, Arne Jonsson, and Lars Ahrenberg. 1993. Wizard of Oz studies - why and how. Knowledge-based
Systems 6, 4 (1993), 258-266. DOI : https://doi.org/10.1016/0950-7051(93)90017-N

Phil Daian. 2016. Analysis of the DAO exploit. Retrieved August 21, 2018 from http://hackingdistributed.com/2016/
06/18/analysis-of-the-dao-exploit/.

Kevin Delmolino, Mitchell Arnett, Ahmed Kosba, Andrew Miller, and Elaine Shi. 2016. Step by step towards creat-
ing a safe smart contract: Lessons and insights from a cryptocurrency lab. In International Conference on Financial
Cryptography and Data Security. DOI: https://doi.org/10.1007/978-3-662-53357-4_6

[33] Joseph S. Dumas and Janice Redish. 1999. A Practical Guide to Usability Testing. Intellect Books.

[34]

[35]

[36]

[37]

[38]
[39]

[40]
[41]

[42]
[43]

[44]

[45]

[46]

[47]
[48]
[49]
[50]
[51]

[52]

[53]

[54]

[55]

Chris Elsden, Arthi Manohar, Jo Briggs, Mike Harding, Chris Speed, and John Vines. 2018. Making sense of blockchain
applications: A typology for HCL In CHI Conference on Human Factors in Computing Systems (CHI'18). 1-14. DOI:
https://doi.org/10.1145/3173574.3174032

Stefan Endrikat, Stefan Hanenberg, Romain Robbes, and Andreas Stefik. 2014. How do API documentation and static
typing affect API usability? In International Conference on Software Engineering (ICSE’14). ACM, 632-642. DOI: https:
//doi.org/10.1145/2568225.2568299

K. Anders Ericsson and Herbert A. Simon. 1984. Protocol Analysis: Verbal Reports as Data. MIT Press.

Ethereum Foundation. 2020. Common Patterns. Retrieved February 18, 2020 from http://solidity.readthedocs.io/en/
develop/common-patterns.html.

Ethereum Foundation. 2020. Solidity. Retrieved February 18, 2020 from https://solidity.readthedocs.io/en/develop/.
Luke Graham. 2017. $32 million worth of digital currency ether stolen by hackers. Retrieved November 2, 2017 from
https://www.cnbc.com/2017/07/20/32-million-worth-of-digital-currency-ether-stolen-by-hackers.html.

Paul Graham. 2001. Five Questions about Language Design. Retrieved from http://www.paulgraham.com/langdes.
html.

Thomas R. G. Green and Marian Petre. 1996. Usability analysis of visual programming environments: a ‘cognitive
dimensions’ framework. Journal of Visual Languages & Computing 7, 2 (1996), 131-174.

Christian Griin. 2016. Map: remove and check values. Retrieved from https://github.com/BaseXdb/basex/issues/1297.
Raymonde Guindon. 1990. Knowledge exploited by experts during software system design. International Journal of
Man-Machine Studies 33, 3 (1990), 279-304. DOI: https://doi.org/10.1016/S0020-7373(05)80120-8

Raymonde Guindon, Herb Krasner, and Bill Curtis. 1987. Breakdowns and processes during the early activities of
software design by professionals. In Empirical Studies of Programmers: 2nd Workshop. 65-82.

Jan Gulliksen, Bengt Géransson, Inger Boivie, Stefan Blomkvist, Jenny Persson, and Asa Cajander. 2003. Key prin-
ciples for user-centred systems design. Behaviour and Information Technology 22, 6 (2003), 397-409. DOI: https:
//doi.org/10.1080/01449290310001624329

David Z. Hambrick, Brooke N. Macnamara, Guillermo Campitelli, Fredrik Ullén, and Miriam A. Mosing. 2016. Chapter
One - beyond born versus made: A new look at expertise. Psychology of Learning and Motivation 64 (2016), 1-55. DOTI:
https://doi.org/10.1016/bs.plm.2015.09.001

Harvard Business Review. 2017. The Potential for Blockchain to Transform Electronic Health Records. Retrieved Feb-
ruary 18, 2020 from https://hbr.org/2017/03/the-potential-for-blockchain-to-transform-electronic-health-records.
Dominik Harz and William Knottenbelt. 2018. Towards Safer Smart Contracts: A Survey of Languages and Verifica-
tion Methods. arXiv:1809.09805.

Maurice Herlihy. 2019. Blockchains from a distributed computing perspective. Communications of the ACM 62, 2
(2019), 78-85.

C. A. R. Hoare. 2009. Null References: The Billion Dollar Mistake. Retrieved February 18, 2020 from https://www.
infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare/.

IBM. 2019. Blockchain for supply chain. Retrieved March 31, 2019 from https://www.ibm.com/blockchain/supply-
chain/.

Simon Peyton Jones, Alan Blackwell, and Margaret Burnett. 2003. A user-centred approach to functions in excel. In
International Conference on Functional Programming (ICFP’03). ACM, 165-176. DOI : https://doi.org/10.1145/944705.
944721

Caitlin Kelleher and Randy Pausch. 2005. Lowering the barriers to programming: A taxonomy of programming
environments and languages for novice programmers. ACM Computing Surveys 37, 2 (2005), 83-137.

Amy J. Ko, Robin Abraham, Laura Beckwith, Alan Blackwell, Margaret Burnett, Martin Erwig, Chris Scaffidi, Joseph
Lawrance, Henry Lieberman, Brad Myers, et al. 2011. The state of the art in end-user software engineering. ACM
Computing Surveys 43, 3 (2011), 44 pages. DOI: https://doi.org/10.1145/1922649.1922658

Amy J. Ko, Thomas D. LaToza, and Margaret M. Burnett. 2015. A practical guide to controlled experiments of software
engineering tools with human participants. Empirical Software Engineering 20, 1 (2015), 110-141. DOI: https://doi.
0rg/10.1007/510664-013-9279-3

ACM Transactions on Computer-Human Interaction, Vol. 28, No. 4, Article 28. Publication date: July 2021.

https://doi.org/10.1016/0950-7051(93)90017-N
http://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/
https://doi.org/10.1007/978-3-662-53357-4_6
https://doi.org/10.1145/3173574.3174032
https://doi.org/10.1145/2568225.2568299
http://solidity.readthedocs.io/en/develop/common-patterns.html
https://solidity.readthedocs.io/en/develop/
https://www.cnbc.com/2017/07/20/32-million-worth-of-digital-currency-ethe r-stolen-by-hackers.html
http://www.paulgraham.com/langdes.html
https://github.com/BaseXdb/basex/issues/1297
https://doi.org/10.1016/S0020-7373(05)80120-8
https://doi.org/10.1080/01449290310001624329
https://doi.org/10.1016/bs.plm.2015.09.001
https://hbr.org/2017/03/the-potential-for-blockchain-to-transform-electro nic-health-records
http://arxiv.org/abs/1809.09805
https://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare/
https://www.ibm.com/blockchain/supply-chain/
https://doi.org/10.1145/944705.944721
https://doi.org/10.1145/1922649.1922658
https://doi.org/10.1007/s10664-013-9279-3

28:52 M. Coblenz et al.

[56] Herb Krasner, Bill Curtis, and Neil Iscoe. 1987. Communication Breakdowns and Boundary Spanning Activities on
Large Programming Projects. In Empirical Studies of Programmers: 2nd Workshop. 47-64.

[57] Jonathan Lazar, Jinjuan Heidi Feng, and Harry Hochheiser. 2010. Research Methods in Human-Computer Interaction.
Wiley Publishing.

[58] Dastyni Loksa, Amy J. Ko, Will Jernigan, Alannah Oleson, Christopher J. Mendez, and Margaret M. Burnett. 2016.
Programming, problem solving, and self-awareness: Effects of explicit guidance. In SIGCHI Conference on Human
Factors in Computing Systems (CHI'16). ACM, 1449-1461. DOI : https://doi.org/10.1145/2858036.2858252

[59] Leonid Mikhajlov and Emil Sekerinski. 1998. A study of the fragile base class problem. In European Conference on
Object-Oriented Programming (ECOOP’98). 355-382.

[60] Lance A. Miller. 1974. Programming by non-programmers. International Journal of Man-Machine Studies 6, 2 (1974),
237-260. DOI: https://doi.org/10.1016/S0020-7373(74)80004-0

[61] Marianne Mueller. 1997. Class.getSigners() returns an array of signers, instead of a copy of the array. Retrieved from
https://bugs.openjdk.java.net/browse/JDK-4048143.

[62] Brad A. Myers, Amy J. Ko, Thomas D. LaToza, and YoungSeok Yoon. 2016. Programmers are users too: Human-
centered methods for improving programming tools. Computer 49, 7 (July 2016), 44-52. DOI: https://doi.org/10.
1109/MC.2016.200

[63] Brad A. Myers, John F. Pane, and Amy J. Ko. 2004. Natural programming languages and environments. Communica-
tions of the ACM 47, 9 (2004), 47-52. DOI: https://doi.org/10.1145/1015864.1015888

[64] Allen Newell and Stuart K. Card. 1985. The prospects for psychological science in human-computer interaction.
Human-Computer Interaction 1, 3 (Sept. 1985), 209-242. DOI : https://doi.org/10.1207/s15327051hci0103_1

[65] W.R. Nichols. 2019. The end to the myth of individual programmer productivity. IEEE Software 36, 5 (2019), 71-75.

[66] Jakob Nielsen and Thomas K. Landauer. 1993. A mathematical model of the finding of usability problems. In IN-

TERACT’93 and CHI’93 Conference on Human Factors in Computing Systems (CHI'93). Association for Computing

Machinery, New York, NY, 206-213. DOI: https://doi.org/10.1145/169059.169166

University of Washington. 2019. Professional Master’s Program. Retrieved February 18, 2020 from https://www.cs.

washington.edu/academics/pmp.

[68] Stephen Oney, Brad A. Myers, and Joel Brandt. 2014. InterState: a language and environment for expressing interface
behavior. In User Interface Software and Technology (UIST’14). ACM, 263-272. DOI: https://doi.org/10.1145/2642918.
2647358

[69] John F. Pane, Brad A. Myers, and Leah B. Miller. 2002. Using HCI techniques to design a more usable programming
system. In Human Centric Computing Languages and Environments (HCC’02). 198-206. DOI : https://doi.org/10.1109/
HCC.2002.1046372

[70] Nancy Pennington. 1987. Stimulus structures and mental representations in expert comprehension of computer pro-
grams. Cognitive Psychology 19, 3 (1987), 295 — 341. DOI: https://doi.org/10.1016/0010-0285(87)90007-7

[71] Kara Pernice and Kathryn Whintenton. 2017. How to Deal With Bad Design Suggestions. Retrieved February 18,
2020 from https://www.nngroup.com/articles/bad-design-suggestions/.

[72] Dewayne E. Perry, Susan Elliott Sim, and Steve M. Easterbrook. 2004. Case studies for software engineers. In Inter-
national Conference on Software Engineering (ICSE’04). IEEE, 736-738.

[73] Benjamin C. Pierce. 2002. Types and Programming Languages. MIT Press.

[74] Benjamin C. Pierce and Yitzhak Mandelbaum. 2009. PL Grand Challenges. Retrieved February 18, 2020 from http:
//plgrand.blogspot.com.

[75] Qualtrics. 2020. Qualtrics Software. Retrieved from http://www.qualtrics.com/.

[76] Microsoft Corp. 2008. Framework Design Guidelines. Retrieved February 18, 2020 from https://docs.microsoft.com/
en-us/dotnet/standard/design-guidelines/struct.

[77] Oracle Corp. 2019. Secure Coding Guidelines for the Java SE, version 4.0. Retrieved February 18, 2020 from https:
//www.oracle.com/technetwork/java/seccodeguide-139067.html.

[78] Mitchel Resnick, John Maloney, Andrés Monroy-Hernandez, Natalie Rusk, Evelyn Eastmond, Karen Brennan, Amon
Millner, Eric Rosenbaum, Jay Silver, Brian Silverman, and Yasmin Kafai. 2009. Scratch: Programming for all. Commu-
nications of the ACM 52, 11 (2009), 60-67. DOI : https://doi.org/10.1145/1592761.1592779

[79] B.F. Robertson and D. F. Radcliffe. 2009. Impact of CAD tools on creative problem solving in engineering design.

Computer-Aided Design 41, 3 (2009), 136-146. DOI : https://doi.org/10.1016/j.cad.2008.06.007

Paulette M. Rothbauer. 2008. The Sage Encyclopedia of Qualitative Research Methods. SAGE.

Arvind Satyanarayan, Ryan Russell, Jane Hoffswell, and Jeffrey Heer. 2015. Reactive Vega: A streaming dataflow

architecture for declarative interactive visualization. IEEE Transactions on Visualization and Computer Graphics 22, 1

(2015), 659-668. DOI: https://doi.org/10.1109/TVCG.2015.2467091

[82] Ben Shneiderman. 1986. Empirical studies of programmers: The territory, paths, and destinations. Empirical Studies
of Programmers (1986), 1-12.

—
=)
~

—

——
0 o0
- o
=2

ACM Transactions on Computer-Human Interaction, Vol. 28, No. 4, Article 28. Publication date: July 2021.

https://doi.org/10.1145/2858036.2858252
https://doi.org/10.1016/S0020-7373(74)80004-0
https://bugs.openjdk.java.net/browse/JDK-4048143
https://doi.org/10.1109/MC.2016.200
https://doi.org/10.1145/1015864.1015888
https://doi.org/10.1207/s15327051hci0103_1
https://doi.org/10.1145/169059.169166
https://www.cs.washington.edu/academics/pmp
https://doi.org/10.1145/2642918.2647358
https://doi.org/10.1109/HCC.2002.1046372
https://doi.org/10.1016/0010-0285(87)90007-7
https://www.nngroup.com/articles/bad-design-suggestions/
http://plgrand.blogspot.com
http://www.qualtrics.com/
https://docs.microsoft.com/en-us/dotnet/standard/design-guidelines/struct
https://www.oracle.com/technetwork/java/seccodeguide-139067.html
https://doi.org/10.1145/1592761.1592779
https://doi.org/10.1016/j.cad.2008.06.007
https://doi.org/10.1109/TVCG.2015.2467091

PLIERS: A User-Centered Process for Programming Language Design 28:53

[83]

[84]
[85]
[86]
[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94

—

[95]

[96]

[97

—

[98]

[99]

[100]

[101]

[102]

[103]

[104]

Ben Shneiderman and Catherine Plaisant. 2006. Strategies for evaluating information visualization tools: multi-
dimensional in-depth long-term case studies. In AVI Workshop on Beyond Time and Errors: Novel Evaluation Methods
for Information Visualization. ACM, 1-7. DOI: https://doi.org/10.1145/1168149.1168158

Max E. Sime, Thomas R. G. Green, and D. J. Guest. 1977. Scope marking in computer conditionals—a psychological
evaluation. International Journal of Man-Machine Studies 9, 1 (1977), 107-118.

Emin Gtin Sirer. 2016. Thoughts on The DAO Hack. Retrieved February 18, 2020 from http://hackingdistributed.com/
2016/06/17/thoughts-on-the-dao-hack/.

Elliot Soloway and Kate Ehrlich. 1984. Empirical studies of programming knowledge. IEEE Transactions on Software
Engineering SE-10, 5 (1984), 595-609.

Stack Overflow. 2019. Developer Survey Results 2019. Retrieved February 18, 2020 from https://insights.
stackoverflow.com/survey/2019.

Andreas Stefik and Stefan Hanenberg. 2014. The programming language wars: Questions and responsibilities for the
programming language community. In Symposium on New Ideas, New Paradigms, and Reflections on Programming
and Software (Onward!’14). 283-299. DOI: https://doi.org/10.1145/2661136.2661156

Andreas Stefik and Stefan Hanenberg. 2017. Methodological irregularities in programming-language research. Com-
puter 50, 8 (2017), 60-63. DOI : https://doi.org/10.1109/MC.2017.3001257

Andreas Stefik, Susanna Siebert, Melissa Stefik, and Kim Slattery. 2011. An empirical comparison of the accuracy rates
of novices using the quorum, perl, and randomo programming languages. In Workshop on Evaluation and Usability
of Programming Languages and Tools (PLATEAU’11). ACM, 3-8. DOI: https://doi.org/10.1145/2089155.2089159

Kent D. Stewart, Melisa Shiroda, and Craig A. James. 2006. Drug Guru: a computer software program for drug design
using medicinal chemistry rules. Bioorganic & Medicinal Chemistry 14, 20 (2006), 7011-7022.

Joshua Sunshine, James D. Herbsleb, and Jonathan Aldrich. 2015. Searching the state space: A qualitative study of
API protocol usability. In International Conference on Program Comprehension (ICPC’15). IEEE Press, Piscataway, NJ,
82-93. Retrieved from http://dl.acm.org/citation.cfm?id=2820282.2820295.

Joshua Sunshine, Karl Naden, Sven Stork, Jonathan Aldrich, and Eric Tanter. 2011. First-class state change in Plaid.
In Object Oriented Programming Systems, Languages, and Applications (OOPSLA’11). DOI: https://doi.org/10.1145/
2076021.2048122

Phillip Merlin Uesbeck, Andreas Stefik, Stefan Hanenberg, Jan Pedersen, and Patrick Daleiden. 2016. An empirical
study on the impact of C++ lambdas and programmer experience. In International Conference on Software Engineering
(ICSE’16). ACM, 760-771. DOI: https://doi.org/10.1145/2884781.2884849

Carnegie Mellon University. 2019. Master’s Programs. Retrieved February 18, 2020 from https://www.cs.cmu.edu/
masters-programs.

A. Marie Vans, Anneliese von Mayrhauser, and Gabriel Somlo. 1999. Program understanding behavior during correc-
tive maintenance of large-scale software. International Journal of Human-Computer Studies 51, 1 (1999), 31-70. DOI:
https://doi.org/10.1006/ijhc.1999.0268

John Venable, Jan Pries-Heje, and Richard Baskerville. 2012. A comprehensive framework for evaluation in design
science research. In Design Science Research in Information Systems. Advances in Theory and Practice. 423-438. DOI:
https://doi.org/10.1007/978-3-642-29863-9_31

June M. Verner, Jennifer Sampson, Vladimir Tosic, N. A. Abu Bakar, and Barbara A. Kitchenham. 2009. Guidelines for
industrially-based multiple case studies in software engineering. In International Conference on Research Challenges
in Information Science. IEEE, 313-324. DOI : https://doi.org/10.1109/RCIS.2009.5089295

Willemien Visser. 1987. Strategies in programming programmable controllers: A field study on a professional pro-
grammer. In Empirical Studies of Programmers: 2nd Workshop (ESP2). 217-230. Retrieved from https://hal.inria.fr/hal-
00641376/document.

A. Von Mayrhauser and A. M. Vans. 1995. Program comprehension during software maintenance and evolution.
Computer 28, 8 (1995), 44-55. DOI: https://doi.org/10.1109/2.402076

Diane B. Walz, Joyce J. Elam, Herb Krasner, and Bill Curtis. 1987. A methodology for studying software design teams:
An investigation of conflict behaviors in the requirements definition phase. In Empirical Studies of Programmers: 2nd
Workshop. 83-99.

Susan Wiedenbeck. 1986. Beacons in computer program comprehension. International Journal of Man-Machine Stud-
ies 25, 6 (1986), 697-709. DOI: https://doi.org/10.1016/S0020-7373(86)80083-9

Preston Tunnell Wilson, Justin Pombrio, and Shriram Krishnamurthi. 2017. Can we crowdsource language design?
In Symposium on New Ideas in Programming and Reflections on Software (Onward!’17). 1-17. DOI : https://doi.org/10.
1145/3133850.3133863

Yoav Zibin, Alex Potanin, Mahmood Ali, Shay Artzi, Adam Kielun, and Michael D. Ernst. 2007. Object and reference
immutability using Java generics. In Foundations of Software Engineering (FSE’07). ACM, 75-84.

Received January 2020; revised February 2021; accepted February 2021

ACM Transactions on Computer-Human Interaction, Vol. 28, No. 4, Article 28. Publication date: July 2021.

https://doi.org/10.1145/1168149.1168158
http://hackingdistributed.com/2016/06/17/thoughts-on-the-dao-hack/
https://insights.stackoverflow.com/survey/2019
https://doi.org/10.1145/2661136.2661156
https://doi.org/10.1109/MC.2017.3001257
https://doi.org/10.1145/2089155.2089159
http://dl.acm.org/citation.cfm?id=2820282.2820295
https://doi.org/10.1145/2076021.2048122
https://doi.org/10.1145/2884781.2884849
https://www.cs.cmu.edu/masters-programs
https://doi.org/10.1006/ijhc.1999.0268
https://doi.org/10.1007/978-3-642-29863-9_31
https://doi.org/10.1109/RCIS.2009.5089295
https://hal.inria.fr/hal-00641376/document
https://doi.org/10.1109/2.402076
https://doi.org/10.1016/S0020-7373(86)80083-9
https://doi.org/10.1145/3133850.3133863

